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1. Introduction

In this paper, an optimum design method for prestressed concrete structures is studied, in which the optimum
prestressing force, tendon layout, height and width of uniformed cross section are determined from the economical
standpoint. The structure is subjected to the stress constraints in the serviceability limit state, and the flexural-strength
design constraints and ductility constraints in ultimate limit state without moment redistribution (clastic design)
specified in ACI code. The rigorousness of the method is illustrated by comparing the optimum solutions in which
the height of cross section is changed discretely and the height is considered as the design variables.
2. Optimal design problem of prestressed concrete structures

In this study, a uniformed cross section is assumed to be rectangular and the cross section is depicted in Fig.1.
From the practical design viewpoint, the layout of tendon is idealized to be parabolic, but the tendon in a member’
element is assumed to be straight for the calculation of tendon length /. As the design variables, prestressing force
P and tendon eccentricities € in the middle of spans and interior supports from the center of
the cross section, height H and width B of a uniformed cross section in structures are taken

into account. The cross-sectional area of tendon A, is determined by P/f,, where f , is the Aps
permissible tensile stress of prestressing tendon. The primary optimal design problem is B
formulated as to find the P, ¢, H and B which minimize the total cost of the structure W @,/ k

subject to the following design constraints of stress limitations in serviceability limit state,
and the flexural-strength design criterion and sufficient ductility criterion in ultimate limit

state without moment redistribution. ; B

The stress constraints in serviceability limit state are given as L

in the case at transfer in the case at service Fig. 1 Cross section
for tension 8, = Ioj| -3y fa. <0 @) for tension 8, = lof - 6 ‘/ f’c <0 3
for compression  g,; = |o} - 0.6 fas0 (@ for compression g, = lo}| - 0.45 f.<0 @

where |o] is the stress at top or bottom fiber in the section j. fci’ and fc’ are, respectively, the concrete strength
developed at the time of transfer of prestressing force and the compressive strength of concrete(28 days). At the
transfer, the dead loads and initial prestressing force are considered as external loads. At the service, the dead loads,
live loads and effective prestressing force are considered.

The flexural-strength and ductility constraints in ultimate limit state are given by

for the flexural-strength design criterion 8 =M, - oM, < 0 ®)
for the sufficient. ductility criterion 8y = Wy~ 0.24p, <0 ©)
where M (=1.4M,+1.7M, ) and M,(=4,f,(d,~0.5a)) are, respectively, the factored moment at the section and the
nominal moment capacity of section. ¢ is the flexural strength reduction factor. @, (=Aprdep fc') and B,(=afc)
are the prestressing reinforcement index and the ratio of the depth of equivalent rectangular stress block (a) to the
distance from the maximum compressive fiber to the neutral axis (c), respectively. M, and M, are the bending
moments due to dead loads and live loads. f,, is stress in prestressed reinforcement at nominal strength at the section.
b and d, express the width of compressive arca in a cross section and the distance from centroid of prestressed
reinforcement to extreme compression fiber at the section, respectively.

The maximum and minimum bending moments due to live loads are calculated by applying a uniformly distributed
live load to each span and summing up all positive or negative bending moment separately. The secondary bending
moment due to prestressing force is obtained by considering the primary prestressing bending moment as the
equivalent loads at each element. In the analysis of structures, the section properties such as cross—sectional area and
moment of inertia are calculated by taking the mean values of the properties at both~end nodes of each member
element.

3. Optimum design algorithm

Utilizing the convex and linear approximation concept, the primary optimal design problem can be approximated
as the following convex and separable subproblem by using the first—order partial derivatives with respect to the
design variables and the direct and reciprocal design variables.

Find P, e, H B which
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m is the number of elements. The sensitivities of W and g; with respect to P, €, H and B are calculated by using the
forward difference method.

The above approximated subproblem is solved by a dual method where the separable Lagrangian function is
minimized with respect to the design variables and maximized with respect to Lagrange multipliers (dual variables).
At the minimization process, the design variables are improved by simple expressions derived from stationary
conditions of separable Lagrangian function. Then at the maximization process, the dual variables are improved by

a Newton—-type algorithm. The optimum solution is obtained by iterating the above min.—max. process.

4. Numerical design examples and discussions

The above method has been applied to various minimum cost
designs of prestressed concrete structures. In this paper, the
numerical results for the three—span prestressed concrete
continuous beam shown in Fig. 2 are discussed.

In the numerical design example, f, f;, f, and f, are
respectively, set at 41 Mpa, 31 Mpa, 1,665 Mpa and 1,103
Mpa. B, and ¢ are 0.85 and 0.9. The unit costs of pre~
stressing tendon and concrete are 6916800 /m® and 24000 fm?,
respectively. The structure is divided into 24 member elements
in order to obtain the accurate results.

Fig. 3 shows the comparison of two optimum solutions, one
for P and € design variables ( case A) and another for P, €, H
and B design variables (case B). For the case A, the optimum
solution is obtained after 8 iterations. The results are drawn in
the dotted line. For the case B, the optimum solution is
obtained after 18 iterations. In this case, the width B is
determined by the lower limit (200 mm). As clearly seen from
Fig. 3, the shape of the tendon is just proportional to the
distribution of the bending moments throughout the beam, then
the optimum solution seems to be quite reasonable. The total
cost for case B (504209) is 42% less than that for case A
(874042). The quite similar optimum solutions are obtained
from various starting points. Therefore, it can be said that the
proposed optimum design algorithm is quite reliable.

To illustrate the rigorousness of the method, the effect of the

height of cross section A on optimum solution is investigated

by changing H discretely. Fig. 4 shows the variation of total
cost W, P and e, due to the change of H where B is fixed at
200 mm. When H is lower than 1.0 m, optimum solutions can
not be obtained by improvement of P and e. By the increment
of H, P is decreased and e, is increased, but the tendency of
variations of P and €; due to the change of H is different to the
combinations of P and €. However, total cost W is linearly
increased by the increment of H. Fig. 4 shows that the optimum
H is nearly 1.0 m. The optimum H and total cost is quite
similar to the optimum solution for case B.
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Fig.3 Comparlson af the optimum solutions
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