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A Kinked Crack Initiated by an Inclined Circular Punch with One End Sliding
and the Other End with a Sharp Corner on a Half Plane

Jun Qian and Norio Hasebe
Nagoya Institute of Technology

1. Introduction A flat-ended punch problem with a vertical crack on the surface of a half plane was researched in the
previous papers [1,2], and a circular punch problem with an oblique crack has been considered recently[3]. In the present
paper, a circular inclined punch problem with one end sliding and the other end with a sharp corner is considered to initiate a
kinked surface crack on the half plane. The half plane with a kinked crack is mapped into a unit circle by a rational mapping
function so that the solution of the problem can be obtained explicitly by solving a Riemann-Hilbert equation. Since the stress
components at the sliding end of the punch are finite, the property can be used to decide the length of the contact region; on the
other hand, the resultant moment about the center of the punch must vanish if the load is acted at the center of the punch. The
fact can be employed to determine the inclined angle of the punch. The stress intensity factors of the crack are calculated with
different frictional coefficients and kinked lengths.

2. The mapping function The half plane with a surface kinked crack is mapped into a unit circle by the following rational
mapping function:
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where £,, E, and ¢, are known coefficients, which are changed with the inclined angle of the original and kinked part of
the crack as well as their lengths; E, is related to the distance from the crack to the punch, and n is usually selected within

16-24 with enough precision. It is not stated how to form (1) owing to the limited length of the paper.
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3. The loading conditions  As shown in Fig.1, the loading conditions of the problem can be expressed as

Pe=pPy=0 on Las=Li+L,
px-upy,fp_,,th on M @
I = —ex+x2 /2R on M

where L, = ABCDEFG, L, =HA4, M =GH, ¢ is the inclined angle of the punch, which is taken as a positive value when the
punch is inclined in a clockwise direction; R is the radius of the curvature of the punch, and g is the Coulomb's frictional
coefficient on M.

4. The complex stress functions In terms of (2), the problem can be transformed into a Riemann-Hilbert equation. By
solving the R-H equation, one of the stress functions can be expressed as

Q) = H, Q)+ Hg(Q) + Ho (Q) + 1+2iu J@© +2@x®© )]

where H ,(C) . H5(5) and H () are related to P, R and ¢, respectively [3].
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g ={(c+ D) —ip(x =D/ [(& + 1) +ip(x - ]; ® =3 ~4v for plane strain state and (3-v)/(1+v) for plane stress state. G
and v are shear modulus and Poisson’s ratio of the half plane, respectively.
The other stress function is given by

WO = =41/ 0 - 0/ DY)/ ' © @

5. The length of the contact region  The stress components on the boundary of the half plane can be expressed as
1 ‘{l—fui (1-a)(1-§) REACIW (C) +h(o)}[x*(0)—x'(0)] S)
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where f(0),g(o) and h(o) are known functions.
The following condition can be formed from (5) to satisfy that the stress components at the sliding end are finite:
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B can then be obtained from (6), and the length of the contact region is decided by

a'mw(a)-w(f) @

The right end of the contact region is assumed to be fixed, while the position of the left end of the contact region changes

with other conditions. Fig.2 shows that the length of the contact region increases with the increase of the frictional coefficient
and decreases with the increase of the kinked length.

6. The inclined angle of the punch_ Since the load is acted at the center of the punch, the resuitant moment on the contact
region must vanish with respect to the center of the punch in the natural state , which can be used as the condition to
determine the inclined angle of the punch. With the increase of the frictional coefficient, the inclined angle of the punch
decreases. and the larger the kinked length of the crack becomes, the larger the inclined angle becomes, as shown in Fig.3.

7. The stress intensity factors of the crack  The stress intensity factors at the tip of the kinked crack are defined as
b‘ U
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where T, =-1 is T on the unit circle corresponding to the tip of the crack, and 8= ~(cty +8,~Dn/180 represents the

angle between the kinked part of the crack and the x-axis.
The non-dimensional stress intensity factors of the crack are defined as

FP +iFg = Va(k; +iKy)
Px
Vb (K; +iKy;)
Pin
The stress intensity factors of the crack increase with the increase of the frictional coefficient, and with the increase of the
kinked length, F, decreases, while for 7, , it decreases for relative larger frictional coefficients, as shown in Fig.4.

In the above calculation, x =2, a, =90°, B, =120°, b/a=0.5, c/a=0.0 andGa® / PR =1 have been selected.

O<blasl (%a)

Fl +iF) = O<albsl (9b)

£

13

Hey
® o LrKo 02 0.4 c.6 08 1
Fig.1 The punch with a kinked crack Fig.2 The length of the contact region
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Fig.3 The inclined angle of the punch Fig.4 The stress intensity factors of the crack
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