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Axially symmetric thermal stress of a penny-shaped

crack under general heat flux
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Introduction

A method has been developed to solve a problem of
finding distribution of stress in the neighbourhood
of a penny-shaped crack in an infinite isotropic
elastic solid under general mechanical loading in
[1]. Extending the method developed in [1] to
thermoelasticity, thermal stress around the penny-
shaped crack subjected to general surface
temperature have been calculated in [2]. Using the
general results of Ref[1,2] in this paper, the
problem of penny-shaped crack whose surfaces are
subjected to uneven heat flux (unsymmetric about
the crack plane) is solved. In terms of prescribed
flux functions, expressions for the mode-I and
mode-1I thermal stress intensity factors K, and K,
are obtained. In the special case of heat flux
functions, stresses at a general point of the medium
are obtained and presented graphically.

Solution of the Problem

Let a penny-shaped crack be located in the plane z
= 0 of an infinite, homogeneous and isotropic
elastic solid . In terms of the cylindrical coordinates
(. ¢, 2z) the crack occupies the region
Osrsa(z=0). The crack is subjected to
axisymmetric surface tractions and heat flux which
are not necessarily self-equilibrating. The heat flux
applied to the upper surface of the crack
(z—>0+,0<r<a) is different from the lower
surface of the crack (z—0- 0<r<a). Moreover,

stress, displacement, temperature and flux functions
are continuous outside the crack regionr>a z =
0). The stress, displacement and temperature fields
at a general point of the medium have been derived
in terms of jumps of stress, displacement,
temperature and heat flux at the crack plane z=0
(r>0) given by
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together with (2.7)-(2.10) of Ref.[1] (see Ref.[2]),

where superscripts 1 and 2 denote temperature

fields for z>0 and z<0 respectively. The jumps A. B,
C. D, E. F [1] are derived satisfying the
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axisymmetric boundary conditions of the crack on
the plane z=0. Boundary conditions are
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together with equations (3.1)-(3.6) of Ref[1]. At the
rim of the crack, displacements and temperature are
continious and radial component of the
displacement is zero at origin. In the absence of
mechanical load, limiting wvalues of stress,
displacements, temperature and heat flux functions
as z—(0+ andas z-»(- and boundary conditions
lead to a Abel integral equations. Hence the
unknown functions A, B, C, D, E, F are obtained in
terms of prescribed quantities.

Substituting A, B, C, D, E, F we can simplify stress
and displacement components on the crack plane
z=0 and hence we can find the mode-I and mode-II
thermal stress intensity factors K| and K, at the

rim of the crack which are given by
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For a Spec1al case of heat flux, that is F,"(r)= ¢, *
Fy(r)=:c,.(0 <r<a) where € and &, are

constants, stress at a general point is derived. The
normal and the shear stress components are given

by
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Fig.1 Variation of the stress component
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Fig.2 Variation of the stress component
o, /C, with1/aforz <0

0 0.5 1 1.5 2 2.5
~— 1/a
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Fig.4 Variation of the stress component
a,./C, with t/a for z <0

where s = z + ia. For z<0 stresses can be obtained

using the fact that first [ ] and second [ ]
respectively of eqns. (9) and (10) are even functions
of z while second and first terms of eqns. (9) and
(10) are odd functions of z. L is modulus of rigidity
and v, o are Poisson ratio and coefficient of
linear thermal expansion of the solid, respectively.

Results and Discussion

en g, =2¢g, g, =0, the expressions for
stress components ar:: same as those given by
Olesiak and Sneddon [3].The non-dimensionalised
stress components o, /C,, o, /C, where
C,=-u(l+v)ae,/(t-v) has been presented in
Fig.1-4 for a special case in which g, =¢; ;
€, = €,, (0 <r < a) that is, upper surface of the
penny-shaped crack is subjected to constant heat
flux €, while the lower surface is kept at the zero

flux. The trends of the curves are similar to
temperature problem [2] but magnitude of these
quantities is less in the present case.

Concluding Remarks

(1) The problem of penny shaped crack under heat
flux is more difficult compared to the temperature
problem. But the heat flux problem is physically
advantageous compared to temperature problem
(Q)If the penny shaped crack is subjected to
unsymmetric heat flux conditions, both mode-I and
mode-II stress intensity factors exist and they are
dependent on material constants..
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