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1. INTRODUCTION

Concrete is a complex and heterogeneous material and it is difficult to analyze its failure properties by
the finite element method (FEM) in which concrete is considered a homogeneous, continnous medium in
general. The Distinct Element Method (DEM) was introduced by Cundall to analyze the granular assembly
numerically assuming that each individual element satisfies the equation of motion and the law of action
and reaction. The first model used two-dimensional polygonal elements and the second model used circular
elements to reduce the complexity of the model and computational time. Later, the interface element
method (IEM) was introduced by Zubelewicz and Bazant. This method modifies the DEM by considering
the brittle aggregate composites as a system of perfectly rigid particles separated by interface layers
whose normal stiffness deteriorates due to loading. In this research a numerical method is investigated to
simulate the internal failure mechanism of concrete under compression using two-dimensional disc elements
with statistical variation of local contact strength between the elements. Also the crack and deformation
patterns at the global failure are presented.

2. FORMULATION OF TWO-DIMENSIONAL DISC ELEMENTS

Fig.1 Two-Disc Elements with Their Interfaée Zones

Fig. 1 shows two general disc elements in contact with each other. It is assumed that each element is
imagined to be surrounded by an annular influence zone indicated by dashed lines. In the figure, x,y are
the global axes, n,t are the local axes defined at the center of the contact zone.

The relative normal and tangential displacements of element j with respect to element i at the center
of the contact zone (vg,vf) can be obtained as follows.
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where V¢ is the vector of relative displacement at the center of contact zone, T* is the transformation
matrix needed to transform the global quantities of element i to the local quantities at the center of the
contact zone, U* is the global displacement vector for the centroid of element i, 97 = 05 - 7 and u} u;/,
w* are the global displacements and rotation of the centroid of element i. Superscnpt c mdxcates the
quantities related to the center of the contact zone.
The local contact forces at the contact zone (f<,ff) can be obtained by applying the force-displacement
relation as follows.
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where F* is the local contact force vector at the center of the contact zone, K¢ is the stiffness matrix of
the contact zone, and k7 and k{ are the normal and tangential stiffnesses calculated from the stiffnesses

of the interface zone.
Then, the force equilibrium equation for element i is expressed as follows.
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where 1 is the number of elements which are in contact with element i, F* is the vector of external global
forces on element i. Eq. 3 will be made for every element in sequence. Then the number of final equations
will be three times the number of elements. These equations will be solved directly to get the global
displacement vector for the elements of the structure.

The reactions of the elements can be obtained by the following equation.

R=KU (4)

where R is the global reaction vector for all the elements in sequence, K is the global stiffness matrix for
the structure, and U is the global displacement vector for the elements in sequence.

3.NUMERICAL SIMULATION AND DISCUSSION

Fig. 2 shows the simulation result of concrete under uniaxial compression taking into account statistical
variation of the local contact strength using the normal distribution. In the analysis the elements in the
top and bottom rows are not constrained horizontally. It can be noticed from Fig. 2(d) that the stress-
strain relationship for different coefficient of varmation (w) is almost the same up to the peack but after
that by increasing the coefficient of varjation the curve becomes softer. Fig. 2(e) shows the stress-strain
relationship for 10 different sets of random values for the local strength with w= 20%
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Fig. 2 Simulation of Concrete under Compression:
(a) Mesh Pattern ; (b) Final Deformation Pattern ; (c) Final Crack Pattern ;
(d) Stress-Strain Relationship for Different w ; (e) Stress-Strain Relationship for Const w

4. CONCLUSION

Through numerical simulations, it is confirmed that the disc element model is able to simulate the
internal crack propagation and the stress-strain relationship of a material like concrete under compression
up to the global failure.
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