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1. Introduction

The effective elastic properties of geomaterials are the subject of long standing interest in the mechanics
community. Theoretical studies on effective elastic properties may be divided into three general
classes: variational methods[1], self-consistent method[2] (S.Nemat-Nasser, M.Hori) and microscopic
field method[3]. It is powerful for periodic micro-structures to employ homogenization method, which
consider the problem in both micro-scale and macro-scale, to find out effective elastic properties. This
method is based on the understanding of microscopic field and revise the macroscopic average field
from microscopic heterogeneity of materials. In this paper, the expression of macroscopic equivalent
matrix is composed of averaging gradient and micro-perturbation induced by micro-heterogeneity. The
micro-perturbation is described by a local problem. Finally the theory is applied to the micromechanics
of a concrete with various micro-structures and comparison to experimental data is made.

2. Fundamentals of homogenization method
2.1 Fundamental equations
The equivalent moduli of a unit cell is derived out based on homogenization theory[3]:
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fluctuation due to the interaction among constituents. It will be shown that it is the W", called
characteristic functions and determined by following local problem (Eq.(2)), that represent the interaction.
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2.2 Some remarks on local problem
The weak form of Eq.(2) is written as:

jyéa—[Em %W‘—m}’k(y)dY = jﬁ;—“&vk(y)dY (3) where V (y) is continuous in Y-periodicity
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and its derivatives exist. Let's see Y =|JY @ JT, and E,, are constants if y € Y,. T, is the interface
of sub-domains Y, & Y
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zero. The second term is:
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functions originate from the inhomogeniety of unit cell. V,(y) is the average value of V,(y) on T,. It
is easy to prove that this force is a self-equilibrated system. Otherwise, there is no unique solution.

3. Prediction of elastic moduli of concretes with different microstructures
3.1 Effect of location, distribution and shape of inclusion B
The effect of location on moduli is seen in Fig.2. Several cases have shown that effective moduli are
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determined by only volume fraction if the inclusion is translated in the unit cell. But the moduli are
different from those obtained by volume fraction averaging technique. It is noticed that if inclusion B
is divided and distributed in the unit cell the effective moduli are different. This implies that the
distribution or interaction of inclusions has effect on macro-properties. Results rotating B in plane
shows that shape of inclusions has vital effect on equivalent properties.

AR

Fig. 1 Interface between Subdomains Fig.2 Effect of Inclusions on Mechanical Properties

3.2 Prediction of elastic moduli of concretes with different microstructures

CELL.FORT[4] was also used to predict the elastic moduli of a concrete tested by A.M. Farahat[5].
The periodic unit cell is assumed in Fig.3. The interface between inclusion and mortar are assumed to
bond completely[4]. Theoretical values E'y‘ are always larger than observed values E,, but less than the

micro-stiffness E_ (see Table 2), agreeing with the experiment. The details of above calculations are
seen the full paper of this one.

Table | Original Data Table 2 Homogenized E’ and Experimental E_
) Steel Cylinder Granite Cylinder Case 1 Case2 Case3
Inclusion Mortar * Cases
(5-0) {G-O) $-C) (G-O) G-0O)
E (x10'MPa) 18 599 207 E:(l()‘ MPa) 42 3 32
1! 03 02 018 E,(10'MPa) 3.6 2.67 2.8
X * Mortars are a little different in different cases. See [5). E (10'MPa) 4.6 32 35

Fig.3 Unit Celi of A Concrete Sample

4. Conclusions

1) It has been shown that homogenized moduli, different from those by volume fraction average, are
not sensitive to the location of a single inclusion. Volume fraction is the most important quantity. The
distribution, shape and inclination of inclusions have vital effect on homogenized moduli.

2) The homogenized moduli for the concrete samples are always higher than those measured in
experiment. This may be due to that CELL.FORT now considers the interfaces between inclusion and
mortar as complete bonding. This is not true because of initial defects in concretes. Improvement is in
progress to involve partial debonding and nonlinearity of each constituent.
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