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1. INTRODUCTION: The equations of motion of a flexible bridge subjected to wind contain
unsteady generalized aecrodynamic forces, which are functions of reduced frequency, are obtained
from either analysis or experiment in the form of tabular data. Rational Function Approximations
(RFA), namely the Minimum State RFA formulation (Karpel), allow the aeroelastic equations of
motion to be cast in a linear time invariant state-space form. Utilizing the rational function
approximation the application of optimal control theory to flutter of the bridge deck with additional
control surfaces is studied.
2. RATIONAL FUNCTION APPROXIMATION TO GENERALIZED AERODYNAMIC
FORCES: A bridge deck of width B submerged in a smooth flow is assumed to have two degrees of
freedom: bending displacement and torsion, denoted by A and o respectively. The flutter equation
of the deck is cast in the form
MG+Cq+Kq=VQq (1) where

q=[n/B o] and
M, C, K are mass, damping and stiffness matrices, V, = diag(-0.5pU°B’, 0.5pU"B") and Q is a complex
matrix built of flutter derivatives H; A’ (i = 1,..,4) which are functions of K = Bw/U. The most
common form of the approximating function for each coefficient Qjj used in aeronautics is a
rational function of the nondimentional Laplace variable p (p = s B/U = iK).

R n 1
Q,-,-(I’) = (AO)U + (Al)‘-jp + Z(AHI);j
{=1

—_ @ Q.j is the reduced-
p+4,

frequency domain
tabular data of force coefficients. The partial fractions are called lag terms since each represents a
transfer function in which the output "lags" the input. There are several variations on the matrix form
of RFA. The RFA formulation, applied in this paper, called Minimum-State (MS) RFA formulation,
allows to approximate Q(p) with small number of lag terms and maintain high accuracy of
approximation.

Where R is

diagonal matrix of
the lag coefficients

Q(p)=A,+pA, +D(pI-R)'E 3)

- A, . The resulting state-space equation is

i M [C _ (B/U)VqAI] M [K _ VqAO] mM'vD|l g The augmented
. state vector con-
a|= I 0 0 q “ tains new states
X, 0 (U/BE (U/BR || x, known as aerody-
namic states and
they are represented by vector x,. The matrices A,, A,, D, E (Eq. 4) are linearly optimized in a
least squares sense while the A, terms are optimized by nonlinear nongradient optimizer (Nelder-

Mead, Sequential Simplex) with imposed side constrains.

3. ACTIVE CONTROL OF BRIDGE DECK: The control surfaces are attached below the both
edges of the bridge deck (Fig.1). The pitch of the control surfaces is actively controlled so as to
generate the stabilizing aerodynamic forces. The aerodynamic forces on the control surfaces,
calculated through Theodorsen's function, and the experimentally obtained flutter derivatives of the
bridge deck (cross section proposed for Akashi Kaikyo Bridge, model geometrical scale 1:150) are
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Fig. 1 Bridge Deck with Control Surfaces

both approximated by the MS RFA
formulation with two lag terms. The
space-state equation of the system is

x = Ax + Bu S)

where x=|[q, q, x,]'s x, is the
vector of aerodynamic states of
size 6 and q=[h/Ba 8, 8,]'. The
coefficients of matrix A are
functions of wind speed. The flutter
wind speed calculated through
complex eigenvalue analysis of the
open loop system (no control) is

found to be Us = 10.2 m/s. Considering state feedback control, a control vector is given by
u = — Kx. The gain matrix K is found by applying optimal regulator theory as K = R7'BS, where R
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Fig.2 Root Locus of Eigenvalues of Controtled Bridge
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Fig.3 Time History of Controlled Bridge Deck
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is a weighting matrix and § is a
solution of steady-state matrix
Riccati equation. The gain matrix
was calculated for wind velocity of
15 m/s and the root locus of the
system with control for wind speed
range of 10 to 20 m/s is shown in
Fig.2. The arrowsin Fig.2 shows
the direction of the movement of
the eigenvalues with increasing
wind speed. The flutter wind speed
is increased to Uf = 18.9 m/s. The
time response of controlled bridge
deck subjected to initial disturbance
and wind of speed 15 m/s is shown
in Fig.3. The flutter wind speed can
be increased further by calculating
K for large wind speed. A time
domain dynamic output feedback

control law is now under
consideration.
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