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Introduction
The problem of thin plate bending of two bonded half- T Y

planes with an elliptic hole and debonding on the interface is Lagaa,

Mo
presented. A uniformly distributed bending moment is T Material 1
applied at infinity in the X-direction, parallel to the @1v1) ‘Q‘

interface. The complex stress functions approach together B E
with the rational mapping function technique are used in the “** ?g‘zfz‘)&‘ 2 U
analysis. Distributions of bending and torsional moments are ’

lMo

—

luMo

a
ES o

shown.

Analytical Method PPy LEz cp
Fig.1(a) shows two dissimilar half-planes containing an sm

elliptical hole with two interfacial cracks on its both sides, -1

whose lengths are indicated by C, and C, (See Fig. 1(a)). A 4
mapping function by means of which materials 1 and 2 are L D) Dia

mapped into the unit circles of the #;~planes of Fig.1(b), j = 1,2, t;ll)Il:alne o ;}fazle

respectively, is exprcsscd as follows[l] ®)

z, = (1)(t )= (1) Fig.1(a) Physical Plane, (b) Unit Circles
1- t ‘(;k

The complex stress functlons $,(7,), ¥,;(1;), (j=1,2) are regular inside the unit circle of Fig.1(b). Since

uniformly distributed bending moment is applied at infinity in the X —direction is considered, the stress
functions are expressed as follows:

¢j(tj)=¢;(tj)+¢f(tj)) W,-(fj)=1l’f(t,-)+ll)f(’j) (2)
where ct);.1 @), w’? (#,) represent the stress states at infinity and are given by

Ay Mo _ M, M, _ M,
) = ey O ih ey Y O Ty ) T Tt ©)
where, W = D2 8 2; which accounts for continuity of the rotations at infinity.
1
The boundary conditions of the external force and displacement are expressed as follows [2]:
(o) 1 s N :
~K,0,(0) + ¢ (0)+v, (0)—-—-[ (m(s)+1 (s)ds)dz+zajz+bj] 4
( ) Dj(l_»vj) .J.O fop ( )
0(0) o (o, ow,
(o) + A0)+Y,(0)=| —+— 5
0,(0)+ S0 (0)+9,(0) [axj > ®)

where K, = (3+v;)/(1-v,),v, is Poisson's ratio, D, is the flexural rigidity. The integral with respect to
§ represents integration along the boundary line. 7(s) and p(s) are the bending moment and bending
force per unit length along the boundary line, respectively. a; and ,are the real and complex constants of
integration, respectively. If a traction free boundary exists, U ;(#,) is given by analytic continuation as
follows:

P, (¢) = K¢J(1/t)— o1/ “)

(1))

¢,(,) ©)
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The boundary condition on L; is determined by substituting from (6),(3),(2) in (4) and is expressed in
terms of the limit values of the function d)f (7,)as follows:

-1
B o) (0) = —n—— (ms+i sds)dz]sh o 7
RCRUACER 1_v,)DL, @+, 9 () ™
The boundary conditions on M are the continuation of moments and rotations and is expressed by
IB+ (0) + )‘1¢f3_(0) =Y1& (O) +huv1 (8a)
KzDz(l"Vz)
Q)= Do 8b
F110(0) 1,0, (1-v,) +K,%,D,(1-v,) 1(0) (80)
_ KK, D,30-v,)+Kk,D,(1~-v,) (80)
' x,D,(1-v,) + 15,5, D,(1-v,)
Y, (1+K2)K1D1(1_V1) (Sd)

Ck,D,(1-v,) +K,56,D,(1-v,)
The problem of obtaining ¢; (7, )is reduced to the Riemann—Hilbert problem of (7) on L, and (8a) on M.

Similarly, the function ¢;(f,) is obtained by merely interchanging the subscripts 1 and 2 in the
foregoing derivations.

Derivation of General Solution
The general solution of Riemann—Hilbert problem is first derived for ¢7 (#,) is [3]
Vi () &(0)
o7 (1) = H(1)+ , T do +, (4)R (1) )
1 1 1\*1 2.71:1 A'J;Xl (G)(G—tl) 1\%1 1\N
Since, no loads apply on L, and M then H,(#,) = 0. The complex stress functions ¢ (#,) is expressed by
M()Ek

v, |1 X 1+A, -v, %, (%) A—”‘B"_ZD(I v,)
ft, - ) S 1 1~ h Ay AN
h =T KZ{ T, xl(z;u} & -1,
K, D,(1-v,) 1 & () A”F"C“?J'z%fkcz)
K2007V,) 1 - ul UV, 10
"D (-v) KZ{ xl(z;k)} g -1, o
where B, =E,/0'@); § =1/8; 4, =¢,&,) (k=12,.,N) _Ma

are obtained by solving 4N simultanous linear equations with
respect to the real and imaginary part of 4,,.

Conclusions

A closed form solution to the problem of thin plate bending of
partially bonded half-planes with an elliptic hole and debondings
on its both sides is obtained. Distributions of bending and
torsional moments are shown in Fig.2 for a rigidity ratio of
D,/ Dy =0.50 and Poisson's ratio of material 1 is v, = 0.50 and
that of material 2 is v, =0.25 and the debonding lengths are
C,=C =10.
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Fig.2 Stress Distributions.
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