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INTRODUCTION

Layering or stratifying is a very common phenomena in our earth. Therefore,
the response of a layered elastic half-space under dynamic loadings has always
been an important topic in both academic studies and practical geotechnical or
earthquake engineering. However, due to the complexity of the problems involv-
ed, there are only a very limited number of cases where the closed-form analyti-
cal solutions are available. In such a layered half-space, one has to deal with
not only the phenomenon of wave diffraction by the traction—free surface, as in
the homogeneous half-space, but also the wave reflecting and refracting effects
among layers with different properties. This makes the dynamic response of a
layered half-space much more complicated and quite different from that of a
homogeneous one. To solve such problems, one has to resort to the numerical
methods. A general time—domain BEM in cylindrical coordinates is thus proposed
to cope with these problems.

The general advantages of BEM in dynamic analysis are well-known, such as
the reduction by one in the spatial dimensionality, and the automatic satisfaction
of the radiation condition at infinity. The present General Time—-Domain BEM can
further reduce the spatial dimensionality by one, which makes it possible to ana-
lyze a 4-D problem, transient time domain wave propagation in 3-D half-space,
only by a 1-D discretization along the -surface as well as the interfaces of the
layered half-space. Thus, tremendous amount of computational efforts can be
saved while a higher degree accuracy is expected as compared with the ordinary

approaches.

Supposing a half-space is composed of several horizontal layers, and each
layer is made up of elastic and homogenous material. For layer k ( k =1, 2,
3,..), the basic time—domain BEM equation has the form
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Further modification on above equation can be made by decomposing the
displacements and tractions into their Fourier components in the circumferential
direction ( see Ref. 1 ),
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In the above equations, P and Q are the position vectors for the receiver and
source points, the superscripts s and a indicate axisymmetrical and antisy-
mmetrical, and the meaning of the other parameters can be found in Ref. 1.
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EXAMPLES

After following procedures: (1) discretization in both time and space, (2) ana-
lytic treatment of time parameter, (3) using the compatibility and equilibrium con-
ditions among the interfaces among the layers, (4) rearranging the unknowns and
knowns, a general matrix equation can be obtained in which the unknowns are the
displacement and traction vectors for each boundary node at present time, while
the knowns are those vectors at previous time steps. So the displacement and
traction fields of whole layered half-space are to be calculated in a step—by-step
manner, if the initial conditions are known. The details of such a process are
omitted here.

Without losing generality, a two—layer half-space model is used to demonstrate
the versatility of the present approach. The parameters of the two layers are:

upper layer: C,; =31m/s, C, = 54 mfs, p, = 2000 kg/m?
under layer: . C,, = 14 m/s, Cp2 = 24 mfs, p, = 2000 kg/m?

It is easy to see that the ratio of elastic parameters G1/G2 = 5/1. Applying
a horizontal force with Heaviside function in time onto the surface of the two—
layer model, the displacement and traction fields among the half-space should be
3-D due to the fact that all three components in cylindrical coordinates, i.e.,
radial, circumferential and vertical, will remain by a non-axisymmetric external
load. The circumferential displacement in the interface of layers is depicted in
Fig. 1, and one can see the vivid step—by-—step pattern of time domain transient
wave propagation in a layered half-space.
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Fig. 1  Displacement ( Circumferential ) field in interface of two-layer
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