AP LBABEER AR (PR 9 )

- 398 MODELING ISOTROPICALLY CONSOLIDATED
NATURAL
SILT-SAND IN TC
Hameed R.A.l, Siddiquee M.S.A.2, Kohata Y.3, and Tatsuoka F.*
Miyazaki K., Sato Y.!, |
INTRODUCTION. For any ratio- "R n!_/c,, 4% ’“~l- efql‘_‘:;z':l

nal analysis, for example by FEM, the for-

mulated pre-peak and post-peak stress-strain L amtss oo
relationships of the soil including the peak 06 |- )i o orucn |_/Dm
strength properties are necessary. For this g joa) eleE(:'funveu ane
purpose Tatsuoka and Shibuya (1992) has " f 7?%;\ fmtats butlewt -

~ C{)=1 Cyfr0)=0.221

o -

[§ x=
&-& Cy(V)==0.0801 Cy{no)=

proposed a Generalized Hyperbolic Equation
to model the stress- strain relationships of
sands. Herein presented is the modified method
and the results of modeling the stress-strain
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relationship obtained from Consolidated drained using GHE.
triaxial compression (CDTC) tests performed " I B B 7
under different testing conditions. el (T EE |
GENERAL HYPERBOLIC EQUA- e R A e
TION (GHE) This method is able to 0o I- )gﬁ‘gﬁ
model a given stress-strain relation from say s Hqﬁﬂﬁ
0.0001% to that at the peak stress state (1- il f/’
10%). On the other hand the Conventional A o ol own
Hyperbolic Equation (CHE) can’t fit the en- " #gé’" o b o oy o
tire stress-strain relationship for a wide range . q
of strain. Clear explanation and definition ottt

of GHE and its constants determination are
given in Tatsuoka and Shibuya (1992).

MODELING THE STRESS-
STRAIN RELATIONSHIPS OF
NATURAL SILT-SAND. Thestress- »

strain relations in TC at a constant o3 for any
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C.{0)=3.9424 C,(>)=0.1504
C,(0)=2.0805 C.{><)=1.2194
==1.6346 §=0.5882

Where ¢ is the deviator stress, ¢ is the
maximum deviator stress,; ¢, is axial strain,
FEipas is the maximum Young’s modulus, C)
and C, are a function of strain level (eq. (1)
and (2)).
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The parameter o and S can be obtained by
the coordinates X=1 and Y at point A (Fig.
1(b)) and the values of C;(1) and C5(1) in
to eq. (1) and (2). The values of Cy(1) and
C5(1) are the coordinates where the line tan-
gent to the data curve at point A intersects
the axes Y/X and Y. Arbitrarily chosen ex-
perimental data of test UDSD2 (Undisturbed
sand), UDSD5 (Undisturbed silt-sand) and
RCSD2 (Reconstitute sand) were fit by us-
ing GHE (Fig. 1 and 2).

Due to a large kink in the normalized plot
(as shown in Fig. 3) the GHE could not
model satisfactorily of the original data of
UDSD5 (undisturbed silt-sand). To alleviate
this problem the following approaches were
taken for determining the constants in the
normalized plot of GHE. The determination
of constants C; (0), C; (o0), C, (0) and C
(00) were the same as mentioned by Tatsuoka
and Shibuya (1992). To determine the con-
stants, C; (1) and C, (1) the following steps
were introduced,

1. Intersection point 'A’ (X3,Y;) between
the lines ’uv’ and ’rs’ is obtained:
C2(00)C>(0)[C1(0) — Ci(o0)]
C1(00)C1(0)[Ca(o0) — C2(0)]
01(00)02(0) - 01(0)01(00)

Y1

2. The line 'pq’ which is passing through
’A’ is obtained:

y = —mpz+ (y1+mpz1) (4)
m, = tan(gl_'-_g?.)
2
Slopes 6; and 8, can be defined by,
C1(0)
tanf; =
anvi 02(0)
Ci(o0)
tand, =
ants 02(00)

3. Point ’B’ (X,,Y2) in the normalized data
with minimum distance from ’A’ is de-
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Fig. 4 Parameters determination for hyper-

bolic relation by modified method.
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termine (Fig. 4). The distance or rela-
tive non-linearity index ’a’ is given by:

)]

Y2

z1 + acos(my)

Y1+ asin(m,) (5)
4. Determine aline which is passing through
’B’ and parallel with the line 'pq’:

y = mya+ (= o) + alsin(m,) —
cos(my))
5. The intersections of this line with the
axes give the Cp, and C,. From Eq. (4),
we obtained:

Cp = U + My
c, = & +mmp:t1
P
Ci(X,) = Ci(p) + asec(m,)
Ca(X,) = Ca(q) + acosec(my,)

« and S8 can be determine by substituting, X5
and C; (X2) and C; (X,) into eq. (1) and (2).
After this modification it is observable that
’a’ becomes a significant parameter. Fig.5
shows the fitted curve using GHE with the
modified constants.

CONCLUSION. After the modi-
fication a reasonable agreement between ex-
perimental data and prediction was obtained
in the case where the non-linearity of stress-
strain is peculiar characteristics.



