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1. Introduction. Recently, with the rapid development of cities, the urban environmental
problems cause serious concerns. Among other factors, toxic gases released from the combusted
fuel or factories located inside cities to the streets are very harmful for health. Thus under-
standing the dispersion of a scalar in a street canyon is important for solving these problems.
This paper intends to give an inside view to the dispersion of a scalar quantity release to a
street canyon by an unknown source. The Navier-Stokes equations and transport equation of
the scalar were solved using spatial average technique (Mason and Callen, 1986; Mason and
Thomson, 1992, Armfield and Asaeda, 1993). The grid eddy viscosity was evaluated using
Smagorinski (1963) model. A non-uniform and non-staggered grid (Armfield, 1991; Armfield
and Debler, 1992) was used to give fine solutions in the near wall region and speed up the
computation.

2. Governing Equations. In real situation, the street canyon can be of a very compli-
cated shape and the problem of computing the dispersion of a scalar in a street canyon must be
considered as a three dimensional problem. However, due to the restriction of the computational
time, at this state the problem has been solved two dimensionally by assuming the wind blow
perpendicular to a long straight street canyon. The non-dimensional Navier-Stokes equations,
continuity equation and equation of transport of the scalar written in tensor form are as follows:
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where «; and u; are the Cartesian coordinates and corresponding velocity components respec-
tively; t is the time, P the pressure, R, the Reynolds number, S the concentration of the scalar,
7;; and H; the subgrid scale Reynolds stress and flux of the scalar. In the system of equations
(1)-(3), the density effect has been neglected by assuming the scalar density the same as the
density of ambient air and constant temperature throughout the flow domain.

3. Numerical Solution. The Smagorinski model (Smagorinski, 1963, Armfield and
Asaeda, 1993 and Mason and Thomson, 1992), was used to compute the subgrid scale Reynolds
stress and flux of the scalar as follows
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where k is the subgrid scale kinetic energy, é;; the kronecker delta and P, the Prandtl number,
taken to be 0.7 (Mason and Thomson, 1992). The subgrid scale eddy viscosity v is evaluated as
follows (Mason and Thomson, 1992)
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where C' = 0.2 and A is a characteristic length scale (Mason and Thomson, 1992).

A numerical scheme was developed to integrate equations (1-3) to get the velocity and scalar
field. A non-uniform and non-staggered grid was used (Armfield, 1991, Armfield and Debler,
1992) to get fine resolution in the near wall region and speed up the solution. Such scheme has
been proved of satisfying the regular ellipticity and integrability requirement and much more
economic than the staggered one (Armfield, 1991).

4. Initial and Boundary Conditions. At the upwind boundary a log-law velocity
distribution was assumed while zero downwind velocity variation was assumed at the downwind
boundary. Zero shear was assumed at the upper boundary and the bottom is nonslip. For the
scalar, a constant flux is specified at the bottom of the street canyon and zero normal gradient
was assumed for all other boundaries. Beginning of the computation, the street was assumed
filled with the scalar of constant density and nowind. Suddenly the wind started and the solution
begin until the steady state was reached.

5. Results and Discussions. The velocity field and density contour lines after the
steady state has been reached are shown in Fig. 1 and Fig. 2, respectively. A large vortex was
shed from the upper corner in the street canyon and pull the scalar to form a large splash of the
scalar. The scalar density is largest in the bottom of the street and near the two vertical walls.
The computations (not shown) showed that with increasing wind velocity, the vortex and the
splash of the scalar extend further in the vertical and downstream directions.

Figure 1. Instantaneous velocity field Figure 2. Density contour lines of the scalar
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