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1. Introduction

#athematical models have been successfuly applied in
water gquality management. These models normally provide some
necessary information for decision makers who are in charge
of water poliution control. In this study, a mathematical
model {s developed to compute the maximum loadihg of a
selected substance which can be discharged into a number of
river segments ang still maintains the substance
concentrations at some identified locations in the river
within the specified limits. The finite element technique is
used in transforming the substance balance equation which is
in the form of partial differentiai eguation to a set of
algebraic equations. From the obtained finite element
equations a set of constraint equations are formulated using
matrix algebra. These constraint equations together with the
objective function which is to maximize the total substance
loading will form a linear programming model. This model can
be solved by the Simplex method to obtain the optimal

loading in each river segment.
2. Governing Equation

A vertical average two-dimensional substance balance
eqguation (Pritchard, 1971) is used to describe dispersion of

substance in a river. This equation is written as
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in which b is substance concentration, u and v are flow
velocity in the x- and y-direction, respectively, h is water
depth, Dx and Dy are dispersion coefficient, k is decaying
rate, Ry is substance loading per unit volume.

In model formulation, two types of boundary are
classified; namely So-boundary where substance concentration
is specified and Sc-boundary where discharge flux is

specified.
3. Formulation of Finite Element Model

The Galerkin weighted residual method is used in the
formulation of substance dispersion finite element
equations. The exacted solution is approximated by a trial
function andé the residual is forced to zerc in an average
sense, {.e. a weighting function {8 introduced and the inner
product of the residual and the weighting function is set to

zerc (Zienkiewicz, 1977). In the Galerkin method the same
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interpolation function 1is used for the trial function and
the weighting function. The weighted residual equation for
substance dispersion is written as
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where b is approximated value of b; Wy is the weighting

function.

By applying Gauss-Green theorem, Eq.(2) is transformed
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The term /[17* =Y -0, :—:dx] represents substance discharge
flux normal to the boundary and can be written as !Qb dL .
Moreover, since the discharge flux along the Sc-boundary ia
not specified, the weighting function Wy is selected such
that its value along the Sc-boundary equals zero. So, the
term  [w0, 324 By -, ’—del can be written as ,J ¥,Q)
where Qb is the specified discharge flux. The approximated
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solution b and the weighting W"; are expressed in terms of

nodal values as
"
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where N is an interpolation function, B and §B are
matrices of the nodal values of b and wb. respectively.
Substitute these expressions into Eq.(4) and with some

arrangement, we obtain
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Since the weighted parameter JB can be arbitrarily
selected, Eq.(5) will be valid orly when the expression in
the brackets vanishes, In the finite element method, the
study domain is divided into a number of elements. The

domain integral can be written as a sum of element integrals

as follows.

* . oT ¢ e C
[ ]/n‘ﬁuj+ fienfan- mm-&;-_,:»ﬁ -2 HNE
h
N k‘N‘N+ o arfaI‘fT ;%I_‘T;_]u {[f‘fﬂk N - N o q;]
© (6)
- [

or in more compact form as
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The element matrices are assembled to form system

matrices. Finally, the substance dispersion finite element

equations are

M B, EB -MR- M, -0 (8

o It

In the steady state case, the term with time derivative
vanishes, so we obtain
F, B
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4. Formulation of Optimization Model

The obtained steady state finite element dispersion
equations are in the form of linear algebraic equations.
This enables formulation of linear constraint equations and
thus linear programming optimization can be applied. The
objective of this model {s to determine the maximum loading
of substance that can be discharged into a number of river
segments and can still maintain substance concentrations at
some identified locations within the specified limits. The
objective function of this model can be written as

T
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where Rbc is the controllable substance loading discharged
into the eth segment, v® i{s volume of that river segment.

The constraint equations are
*
bj < bj at any identifled node J. (11)

The substance classified as

loading Ry can be
controllable and uncontrollable loadings and the matrix Rb
is divided to Rbc and Rhu' respectively. Corresponding to
R _ana R . the matrix M in Eq.(9) s divided into M, and

M“, such that

Manc +M“Rb“ ~-MR, (12)
Then, Eq.{9) can be written as

FB - MR - MR, - M, - © (13)

The matrix B Is also divided into 2 matrices, namely B

u

and B', corresponding to nodal points with non-specified and
specified substance concentrations, respectively. The matrix

F. is then divided into ¥ and F, , such that
b bu be

Fb“B“ + F,B, - B (14)

Substitute into Eq.(13), we obtain
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On the So-boundary, the substance concentration is
specitied and so the equations corresponding to those nodal
points can be eliminated. This can be done by eliminating
all corresponding rows in the matrices F . F . M. IM“‘ and M“.

Then, we obtain
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The matrix Bu can be written as
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or in more compact form

B -

u

G,R, + By (8)
Then, the constraint equations become

.
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where Bu_‘| is the matrix of substance concentrations at some

points, B' s matrix of the limiting

]

and E\’J are respectively obtained from

identified nodal

concentrations. G"J

the elements of Gy and B, which are corresponded Yo the

identified nodes.

In conclusion, the following optimization model is
obtained
T
Objective Function : Maximize z ~ V Ry (20)
Subjected to :
*
G,R, + By s B @n
and R = o (22)

The Simplex method is then applied to solve for the
optimal loading Ry . which is allowed to discharge into each

river segment and still satisfies the specified constraints.
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