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Introduction: Cables with many qualities such as: light weight, high strength with long span coverage
have played a important role in the modern bridge design. However, theses advantages which make cables
economically preferable can undermine their dynamic stability and therefore make them more vulnerable to
the vibrations induced by external loads. This point can justify the special measure for the vibrations control
applied to these very flexible structures. In the practices until now, methods of vibration control applied to
the cables are relied on the passive devices such as oil damper, tuned mass damper etc., which might have
serious limitations if the cable span and therefore the sag-span ratio increases. The difficulty is due to the
increase in vibration modes excitable and their closeness in the frequencies. This shortcoming points to the
active control as the logical choice for the suppression of cable vibration. Many active control algorithms
have been developed so far are based on the modal decomposition which are very powerful in general
structures, may again have difficulties due to the closeness of the mode shapes. Another alternative would be
the control based on the wave propagation principle which can avoid the modal decomposition and provides
more robustness. However, method of wave control to sagged cable by the wave suppression [3] can lead to
the concentration of strain energy in a localized region, which might aggravate the problem of fatigue. In this
study, a new principle based on the minimization of energy transported by the wave will be proposed.

Wave control in sagged cable:

In general, the wave control implementation in cable is consisted of actuator and two sensors installed
nearby. If only the in-plane motion of cable is interested, these devices should be capable of detecting waves
and generating forces in both directions in the plane of motion since the longitudinal and transverse waves
are coupled in cable with sag. A on-line computer is used to predicting the wave state at the actuator location
and calculating the input signal to the actuator. The problem of measurement and prediction are treated in
other references [1][3]. This study is only concerned with the control algorithms, therefore the wave state at
the control location is assumed to be completely known.

Wave propagation in cable by energy concepts:

The governing equation of motion in sagged cable can be reduced to the wave form as (Ref [3]):
Vv, + AV, +Ev+Tf=0 )
where E is a 4X4 matrix in function of the longitudinal stiffness AE, initial tension Te, mass density p and

the static configuration of cable, A is a diagonal matrix [cz,-c1,¢2,-¢2], With cz,¢2 are longitudinal and
transverse wave propagation velocity, f is the external forces and the subscripts #s denote their partial
derivatives. The term v here stands for the wave state vector and it is related to the state vibration vector r as:
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Matrices T and T-1 define the transformation between v and r and their explicit form can be seen in ref.[3].
The variable u,w are horizontal and vertical displacements meanwhile s,¢ represent the material and time
coordinates respectively. With these definitions, the dynamic energy density, that is, the amount of dynamic
energy associated with an infinitesimal portion of cable is expressed as:

J=EAv} + EAv, + T,vi + T,v; (3)
It can be observed thatJ is a sum of individual contributions from 4 single waves vi. These energy amounts

are not stationary and could be considered as transported by their corresponding waves. It can be defined an
energy index as:

J = cRyv? fori =1,4 6]

This index is interpreted as the flow of energy carried by the wave v; through a point at certain instance. The
cocfficient R; is equal AE or Te for the case of longitudinal or transverse wave respectively.

€ energy:
The effect of control force on the cable can be expressed as (ref.[3]):
T'l.p =vy -V, Wwhere pT={ 0 o0 % Epl } (5a,5b)

For this case, only the in-going waves v “; are known from the observations, then there will be 6 unknowns

v*; and py, py with 4 equations to be solved. It can be defined a performance index as the total amount of out-
going flow of energy according to (4)

4 4
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By substituting v*; from (Sa) the expression (6) can be reduced to a quadratic function in px,py which can
be minimized to determined the control forces. If the local coordinate is chosen, expressions of control law
will be further simplified, and the control forces is explicitly calculated as:
Px=pcy (Vl _Vz] > Dy= Pcz(vs - "4)
t rmanc d discussio
To study the performance of this control, numerical simulations are conducted in three models of cable with
different sag-span ratios (0.8%,4 %, 8%) under two conditions: free vibration and forced vibration. For each
case, the total dynamic energy and the magnitudes of control forces both longitudinal and transverse are
computed in the normalized time and are used to evaluate the control performances.

(7a,7b)
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a) Free vibration b) Forced vibration

Figure 1 Total energy of vibration in cable.

Figures 1a and 1b show the level of dynamic energy in cable for the free and forced vibrations respectively.
It can be observed that in case of free vibration, the total vibrational energy is monotonously decreased. This
point suggests that the control designed based on the energy associated to the wave is effectively reducing the
localized strain. The performance of control for larger sag-span ratios is much better as shown in both
figures. The time for free vibration to be notoriously decreased and the eventual level of forced vibration are
significantly smaller in cable with large sag. This may be attributed to effect of longitudinal forces which is
more effective when the longitudinal wave becomes of importance.
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Figure 2. Control forces in forced vibrations.
Figures 2a and 2b show the values of control forces in forced vibrations. It can be observed that both
longitudinal and transverse forces required in shallow cable are larger, which implies that the level of
vibrations in this cable is higher. In cases of large sag cable, there is an initial decrease in longitudinal forces
with a corresponding increase in transverse forces. This might indicates that there is a shift in the vibration
shape from the initial odd mode to the even mode.
Conclusion:
The wave control by the energy approach has shown advantages in comparison with the wave suppression
scheme, where the localized concentration of strain energy can be avoided. In general, the control is more
effective for the cable with large sag-span ratio.
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