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1. INTRODUCTION: When a cable-stayed bridge has a long span over 500 meters, static stability of
the whole bridge increases its importance in design because of increases in: 1) the compressive forces in the
towers and deck under gravity load, and 2) the wind load acting on the bridge. Under the wind effects, the
long-span bridge is subjected to large, displacement-dependent wind loads of three components, i.e., a drag
force, a lift force and a pitching moment. Moreover, the long-span bridge exhibits geometric nonlinearity due
to beam-column effect, nonlinear behavior of cable, and bridge geometry change. Previous research on the
static stability of this type of bridge has generally been based on the linear model, i.e., the linear bending
buckling analysis under gravity load, linear lateral-torsional buckling and lincar torsional divergence analyses
under wind load. Now with the increase in the span length of this type of bridge, it is imperative to
investigate the nonlinear buckling behavior. In this study, modeling and behavior of nonlinear static
instability under gravity and displacement-dependent wind loads are presented by finite element method.

2. MODELING OF CABLE-STAYED BRIDGES: A cable-stayed bridge is idealized by a three-
dimensional finite-clement model. The tower and deck elements are idealized by a beam-column element.
The nonlinear stiffness and various elastic instabilities, such as bending, torsional, and lateral-torsional
bucklings are considered through the use of the geometric stiffness matrix of beam-columns augmenting the
elastic stiffness matrix of beams 1'2), The nonlinear behavior of cables due to the cable sag is considered
through the use of the equivalent elastic stiffness of the cable as an ecquivalent straight chord element. In
addition, the large nodal displacements of the stay cable are considered through the use of the geometric
stiffness matrix of three-dimensional trusses augmenting the equivalent elastic stiffness matrix of cables.

3. MODELING OF NONLINEAR INSTABILITY

(1) Instability Under Gravity Load: Modeling of nonlinear instability under gravity load is based
on the linearized incremental approach, together with the automatic selection of load increments. The
linearized eigenvalue problem for the jt step is written as:

[{Ke(uj_l , Gj—l] + Kg(uj_1 , oj_l)} + AA Kg(uj , Aaj)] AU; =0 €y
where Ke and Kg are the structural elastic and geometric stiffness matrices, respectively, 4U;j is the
incremental displacement vector. The predicted instability load is Fer = Fj-7 + 4AAFj. At convergence, 44
=0and Fe=Fj.1.

(2) Instability Under Displacement-Dependent Wind Load: Modeling of nonlinear lateral-
torsional buckling under displacement-dependent wind load is based on the incremental-iterative approach,
together with the automatic selection of trial critical wind velocity. The linearized incremental equilibrium
equation for j* iteration is written as (Fig. 1)
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Fy(a) = —%—erzBC (@) (3-5) Fig. 1 -Torsional displacement of a bridge deck and

1 <om2 displacement-dependent wind load in wind and bridge axes
My(a) = >PV/B C,a)
In Egs. (2)-(5), superscripts ¢ and W mean gravity and wind loads, respectively; ¥; and Fj.j are the
displacement-dependent wind load vectors based on the current and preceding wind angles of attack,
respectively; Fx, Fy and Mz are, respectively, the drag force, lift force, and pitching moment in the bridge
axes; Cx, Cy, and Cz are, respectively, the drag, lift and pitching moment coefficients in the bridge axes;
Vr is the relative (horizontal component) wind velocity; o is the air density; B is the deck width; An is the
vertical projected area of deck; « is the effective wind angles of attack consisting of the torsional
displacement of deck ¢ and the wind angle of incidence @p. The above process will converge for any given
wind velocity less than the critical wind velocity.
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4. BEHAVIOR OF NONLINEAR INSTABILITY: The proposed modeling of nonlinear
instability was applied to a long-span cable-stayed bridge with a center span length of 1000 meters during
erection and on the completion (Fig. 2). The geometric nonlinearity in the long-span bridge results in
significant reduction of the buckling load factor, compared with the linearized buckling analysis (Fig. 3).
When all sources of geometric nonlinearity are considered, the bridge first exhibits the hardening structural
behavior at the beginning of the incremental loads, and then the bridge becomes softening structural behavior
as the applied load approaches the buckling load (Fig. 3).

The nonlinear lateral-torsional buckling analysis under the three-component displacement-dependent
wind loads also results in significant reduction of the critical wind velocity (Fig. 4), compared with: (1) the
linearized buckling analysis under the effect of initial wind forces, and (2) the torsional divergence analysis
under the effect of pitching moment only. The reasons of such a reduction of the critical wind velocity are the
considerations of: (a) the increase of the three-components of the wind loads due to the torsional
displacements of the deck, and (b) the relaxation of the elastic stiffness of the cables due to the effects of lift
forces and pitching moments. The positive angle of incidence significantly reduces the critical wind velocity
(Fig. 5). The half-span bridge during erection is much more susceptible to the lateral-torsional buckling than
the completed bridge (also Fig. 5).
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Fig.2 Modeling of studied bridges: (a) a completed bridge, (b) a half-span bridge during erection
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5. CONCLUSIONS: The proposed, mnonlinear

instability modeling results in significant reduction of the
instability load, compared with the linear one. Therefore, for
long-span cable-stayed bridges, the static instability analysis
should include the geometric nonlinearity as well as the three-
component displacement-dependent wind loads to assure the
adequacy of the total analysis. With regard to the static
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instability analysis, the cable-stayed bridge with the center 801
span length of 1000 meters presents no serious problem and 60
accordingly can be a realistic solution. 40
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