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INTRODUCTION: Neural networks are very powerful in classification problems and input to output
mapping and have been used in the field of earthquake engineering [1,2]. However, the efficiency of the
network depends largely on the training data used. Previous studies used actual real-world data to train the
network, but such data are few and may not be favorably distributed within the range of values in which the
network is expected to operate. This will resultin a bias for the network to minimize errors in the range which
has a lot of data rather than to minimize errors equally along the whole relevantrange. In this study, simulated
earthquake ground motions are used to generate training data that are well distributed within the range of
values specified. With the use of simulated ground motions, a more unbiased neural network model can be
achieved.

SIMULATION OF STRONG GROUND MOTION: The Table 1. Parameters for earthquake simu-
earthquake ground motion is simulated by first generating a lation

stationary time series having the Kanai-Tajimi (K-T) power  Parameter| Lower Limit Upper Limit
spectrum, S(w), and random phase angles: -
total time | 7.5 30s
1+4h} 0?/ o 0 S, 100 cm?/s*| 75.0 cm?/s*
St) =S8 > ) 4.0 rad/s 40.0 rad/s
(I-0?/ @2 ) +4h} 0?/ o s (0.64Hz) | (6.34Hz)

where hg= 0.4and o, is the dominantfrequency of motion. The
stationary time series is then multiplied with a trapezoidal —
envelope function to taper the start and end of the ground é
motion. A rise time and decay time of 2.5 s was used in this L
study. To have a well-distributed set of strong ground motion 2
data, the parameters of the K-T spectrum and total time of 2
simulation are randomly selected within the range of valaes 4
(Table 1), assuming a uniform distribution for the parameters. %

A total of 450 ground motion time series were generated. g
Figure 1 shows the distribution of the maximum acceleration
and velocity for the set of simulated earthquakes. o ++r—r— r—T"T"7
STRUCTURE / DAMAGE MODEL: For this study, a 0 100 200 300 400 500 600

single-degree-of-freedom model (T=0.55 s) representing two-
story wooden houses commonly found in Japan was used. The
model has a bi-linear stiffness with the secondary stiffness Fig. 1 Distribution of maximum accelera-

max. acceleration (cm/s/s)

taken as 20% of the initial stiffness. The damping ratiois 0.05 tion and velocity for the 450 simu-
and the restoring force at yielding is taken as lated earthquakes
Qy =mg - Cy where Cy =025/¥/T )

Its response to the simulated earthquakes were calculated by a step-by-step nonlinear analysis. The ductility
factor is then used to represent the damage level of the structure for that ground motion.

NEURAL NETWORK MODEL: A back-propagation neural network is used to estimate the damage level
(i.e., ductility factor) from the indices of the input ground motion. The Normalized Cumulative-Delta-Rule
learning algorithm was used together with the Hyperbolic Tangent transfer function. The ground motion
indices (i.e., PGA, PGV, PGD, SI, mean square, and time duration [3]) were used as input to the network while
the damage level was used as the output. The neural network has one hidden layer with four processing
elements fully connected to the input and output layers and bias (Figure 2).

RESULTS AND DISCUSSION: Due to the large number of training data, 900,000 training counts were
done. Since the relationship between input and output is very complex and highly nonlinear, the network
cannot be expected to predict the output precisely. The leamning process, however, will minimize the errors
associated with the training data. In this respect, it is similar to a multivariate regression, although an a priori
functional form is not required. A plot of the desired output and the network output shows that the neural
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network gives a good estimation of the damage (Figure 3).
This implies that for any earthquake motion within the
range of the training data, the probable damage can be
immediately estimated without making use of numerical
analysis methods. This makes the network ideal for very
quick damage estimation as the ground motionisrecorded
by strong motion sensors.

A sensitivity analysis of the trained network shows that
the output (i.e., damage) is most affected by the PGA, S,
and the mean square of the ground motion. It is least
affected by the time duration of the motion. To see the
effect of changing the input parameters, four cases are
compared. Case A represents the network using 6 input
parameters (i.e., PGA, PGV, PGD, SI, mean square, and
time duration). Since SIand PGV arerelatively correlated,
2 more cases without the PGV (Case B) and then withount
the SIvalue (Case C) are used. Case D uses only the PGA,
SI, and mean square.

Figure 4 shows the convergence of the four cases from
10,000 learn counts to 90,000 learn counts in terms of the
correlation between the desired output and the network
output and in terms of the root-mean-square error of the
training data. It can be seen that Case A gives the best
estimation followed by Case B, Case D and Case C. This
implies that the neural network model makes use of as
much information as it can to arrive at an estimate of the
damage.

CONCLUDING REMARKS: A neural network model
is used to estimate the damage of a specific structure
(T=0.55s) from basic indices of the ground motion. To
have a well-distributed training data for the network, 450
artificial earthquakes were generated from parameters
randomly chosen from a specified range of values. A
sensitivity analysis of the network shows that the PGA, ST,
and mean square have the most effect on the damage for
the particular structural model studied. However, the
network which uses all the ground motion indices pro-
vides the best estimation of the damage of the structure.
Although this study only considers one specific structure,
itcanbe easily repeated for other structures as well. Itmay
also be important to include an input parameter which is
a function of the predominant period of the structure and
of the ground motion. These considerations will be
included in future studies.
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Fig. 2 Neural network structure
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Fig 3 Plot of the neural network output vs the
desired output
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Fig4 Convergence of the neural network in
terms of the root-mean-square error and
the correlation between the desired and
network outputs



