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1. Introduction

The movement of contaminant in flowing water is governed by “Advection-Diffusion Equation”
and a highly accurate numerical scheme which is not suffered from numerical diffusion, is desired to
solve it. Among various numerical methods available, three discretization schemes were chosen to
investigate their performance in solving the advection-diffusion equation. They are (1) Power Law
Differencing Scheme (PLDS) [1], (2) Quadratic Upstream Interpolation for Convective Kinematics
(QUICK) [2], and (3) QUICK with Estimated Streaming Terms (QUICKEST) [2]. Each of these
schemes uses control volume formulation. One case of advection-diffusion was numerically solved
and the results are compared with an exact analytical solution.

2. Basic Equation
Unsteady one dimensional advection-diffusion equation of a scalar ¢ is described by,
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where u(x,t) is the advecting velocity, D(x,t) is the diffusion coefficient and s(¢,x,t) is a source term.

3. Universal Limiter

Certain restrictions are applied to control volume face value (¢) depending on local behavior of ¢
[3] which are termed as universal limiter constraints. Fig. 1(a) shows locally monotonic behavior of ¢
near a control volume face where the central, upstream and downstream node values are denoted by
¢c, ¢y and ¢p respectively. Fig. 1(b) depicts the same behavior but in terms of locally normalized
variable ¢, which is defined as,
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Universal limiter constraints in terms of normalized variable are shown in Fig. 2.
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4. Test case
The case considered for the solution of Eq. (1) is boundary value problem specified by,

¢(0,t) = co, 0<t<oo; ofz,0)=0, 0<z< (3)

The exact solution is given by

ot = 3 [t (5 757) +orte (57 o (5)] “

5. Results and Discussion

All the calculation were performed with Peclet number 10. The results of PLDS, unlimited
QUICK and QUICKEST schemes are shown in Fig. 3. PLDS always shows large amount of numerical
diffusion which increases with time and Courant number () and the results are grossly inaccurate
though there is no wiggle. QUICK and QUICKEST schemes are free from numerical diffusion.
QUICKEST scheme gives highly accurate results but small unphysical oscillations are produced near
the region of sharp gradient change although they die out with time as the sharp discontinuity
is diffused. The accuracy of QUICKEST scheme is better with higher Courant number. QUICK
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produces generally less accurate results than QUICKEST and the wiggles are relatively much greater
which do not disappear with time. Its accuracy increases with lower Courant number.

Universal limiter constraints have been applied to overcome the problem of wiggles. Fig. 4
shows the results of ULTIMATE (using universal limiter) QUICK and QUICKEST schemes. Appli-
cation of universal limiter success-
fully alleviates the overshoots and
undershoots but a new problem
arises. ULTIMATE QUICKEST
scheme shows loss in accuracy
when the Courant number is high.
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