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Density flow can be described as the flow which results from the small density differences of materi-
als. The study of density flow attracted much attention because of its wide spectrum of applications in
all engineering fields. Many numerical methods have been proposed for density flow problems. Marker
and cell method is most commonly used one to simulate the density induced flow problems. Daly {1],
Daly and Pracht [2] have studied the density current surges for different density ratios using marker
and cell method. They compared their result with experimental observations and the agreement is
good. Hirt et al [3} simulated numerically the intense explosion in the atmosphere using marker parti-
cles by arbitrary Lagrangian and Eulerian method. Extending this finite difference analysis principle,
Kawahara and Ohmyia [4-5], and Ramaswamy [6] have proposed finite element simulation for free
surface density flow. The method developed by Kawahara and Ohmyia [4-5] is based on velocity cor-
rection principle originated by Chorin. By discretizing the equation of motion, intermediate velocity
is obtained. This intermediate velocity may not satisfy the continuity equation. To correct this inter-
mediate velocity, correction potential is introduced. One of the necessary condition for this analysis
is, the normal pressure gradient at (n+1)th time should coincide with n th time value. It is difficult
to keep this condition valid for all situations. In Ramaswamy’s numerical simulation [6], this difficulty
has been avoided by deriving pressure Poisson equation directly from the momentum equations. How-
ever, boundary condition complexities for Poisson equation still exists. Recently Hayashi et al [7] have
analyzed the pressure boundary conditions for both the consistent and the directly derived pressure
Poisson equations and suggested a simple way to derive Neumann pressure boundary conditions for
solving the pressure Poisson equation.

Following Hayashi et al’s analysis [7], we have presented a numerical method for the free surface
density flow. In the first step of the present method, the pressure field is computed from the derived
pressure Poisson equation. The second step is the calculation of velocity vector field from the mo-
mentum equations explicitly using the known pressure. To track the free surface position, rather than
using the free surface kinematic relation followed by references [4-6], we have employed Lagrangian
method. By this process, free surface position has been computed without any additional equation.
This modified approach’s (Eulerian mesh with Lagrangian free surface line) applicability has been
demonstrated through numerical examples.

Formulation of the problem:

Using the standard summation and indicial notation, the following Navier-Stokes equations for the

two different density fluids (Boussinesq approximation is assumed) can be written as
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where u; and p are fluid velocity of coordinate z; and pressure. The notations p, py, ¥ and f; mean
density, reference density, kinematic viscosity and body force respectively.
Initial and boundary conditions:

The surface I' consists of two types of boundaries, that is, solid boundary I'; and free surface
boundary I';. The initial and boundary conditions are
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Where n; is unit vector normal to the boundary and bar means prescribed value.
Marker movement and Density distribution:

In the present method, marker particles directly involves in the computation at every time step.
Initially marker particles have been classified according the type of fluid each represents and then
each retain their classification. It is convenient to identify particle position at any time during the
computation. The time advancement of particle position is done according to the following relation

et = 2? + Atu? (6)
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Where z? is the position of marker particle at time n. u? is the local velocity, it has been calculated
by using the linear interpolation functions of each element. Once we know the complete information
about each mesh cell, density can be calculated from these data using the following formula
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Where p) represents the density of element (i), p; and p, are the densities of the two materials, and
n; and ny are the numbers of particles of materials 1 and 2 in each element.
The reference density is computed from the equation
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Where A®) is an area of the finite element and M is number of elements in the computational domain.
Numerical examples:

Two test examples, mixing of two different density fluids and high density flume slide over an inclined
plane filled with low density fluid have been chosen. The computation starts with zero velocity field.
The computed density distribution shown by marker particles at different time points is explained
in Fig.1. The figure configuration clearly shows the different density fluids mixing behaviour (heavier
fluid sinks under the lighter fluid as time increases). This computation uses lumping parameter (0.9) to
reduce the existing numerical damping near the interface. The shown result’s close confirmation with
other theoretical and experimental observations indicate presently developed algorithm’s effectiveness
in handling the free surface density flows.

Fig.1. Density distribution shown by marker particles.
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