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1. INTRODUCTION : Time delay occurs mainly because of on-line data acquisition, filtering, control
force calculation, and the actuator time delay. The effect of time delay on the stability of a SDOF system
with time delayed feedback has been presented earlier by the authors by deriving an explicit formula for
maximum allowable time delay (when the structure becomes unstable){1]. It was shown that the maximum

allowable time delay (B,,) depends on natural period (Tg), structural damping and feedback gains. For

direct velocity feedback control, for an undamped system, it was shown that B, /T, =

0.25/(N {2+1+Cy), €, is the active damping ratio. We observe from this equation that B, decreases as we
increase the active damping or control higher modes with low time periods. In this paper, we present a
mehtod to compensate time delay by modelling it as transportation lag. We demonstrate different aspects of
the method by a numerical example.

2. TIME DELAY COMPENSATION: The equation of motion for the n dof controlled structure with time
delay P in the control signal can be written in the state space form as,

¥ = Ay(t) + Bu(t-B) +Ef(t) 49

Where A and B are standard state space matrices, u(t) is r control force vector ( r is the number of
controllers ), E is external force location matrix and f(t) is external excitation vector.

Referring to Fig.1, time delay in control signal can been modelled as transportation lag, as proposed
by Hiratsuka et al.[2], during the flow of signal from the computer through the actuator to the structure.
Denoting a control signal flow parameter q(v,t) and length along the unit length pipeline as z, we can write
the continuity equation for the flow as in Eq.(2).
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where, q(o 9= 0, 419 = v =u(-B) feTraispormion > -1
and 1/Pin the above equation is the velocity of lag B
control signal flow. Fig. 1 Time delay modelled as transportation lag.

Using finite difference approximations, we can write the continuity equation in discretized form as,
a(q(z_l’t) - q(zj'lyt)) + m(q(zl’t) - q(Zj'19t)) = 0 j = 1 2 .m

ot B 0z ( 4)
Here, m is the number of discretizations.
Now, we combine Eq.(1),(3) and (4) and and write the augmented system as,
¥() = Ay () + Bu(t) +Ef(1) (5)
where, JO =[ yO qi(t) . . q) . . v ]" ©)

is 2n+( x m) augmented state vector. For detailed description of the modelling and augmented
matrices/vectors, please refer to the work by Agrawal et al.[1].

By choosing a proper response penalty matrix Q and control cost penalty matrix R, we do the linear
optimal control of the system represented by Eq.(5) using quadratic performance index and obtain the
control law as,

iB

m
u(t)=G 1x(t)+z Go,ju(t -7

j=1 ™
where, Gy and G, ; are gain matrices obtained by solving the algebraic Riccati matrix equation[3]. We
observe from this equauon that the present control law utilizes both the response of the structure as well as
past control force inputs whereas the optimal control without time delay utilizes only the response of the
structure. The stability of the time delay compensated system is guaranteed if the original system defined by
Eq.(1) is controllable and observable[1].

3. NUMERICAL EXAMPLE: We take an example of SDOF system with 1.0 sec undamped natural period,
2.0 % structural damping and 0.3 sec time delay and demonstrate the time delay compensation, response
reduction and control energy requirements using a single actuator. Weighting matrices Q and R are chosen
such that R = 0.1 and Q,; = 3.4 . Other elements of Q matrix are zero.
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Fig. 2 shows response histories of the system subjected to g o ————r ,
harmonic loading. If the time delay is not compensated, the & .. 1o POBRECERY 1] Compensated ...

system becomes unstable. Compensating time delay by the

present technique, the system is stable and vibration control % ) v = S 1/ N :
is significant (83.50 %). Although, the response reduction @' AV
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is 92.75 % when there is no time delay. B o sl T a 4;(0 5
time ( sec.

However, the control is not effective in the beginning. we Fig. 2 Response of the system subjected
observe this from the response of the system subjected to __ to harmonic loading.
43.4 kN impulsive force, shown in Fig. 3. The reason g , .,
may be that complete past control force information is not — NCOmpcnsatcd , Uncontrolled
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Fig.4 shows the response time history of the system & -o-ois o o W :
subjected to E1 Centro N-S 1940 earthquake. We see that B, o, L 10 ime delay
the method works well for random seismic loads as well. B ¢ e me o me tim;z sec ; °
We also conﬁnned'that the uncompensated system became Fig. 3 Response of the system subjected
unstable when the time delay exceeded Bpa- to impulsive loading.
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In the present technique, time-delay has been discretized oo

into m segments. The response reduction and increase in g ° i T e

required control energy calculated for various values of m, g —o.1sp-*in= Uncontrolled__ -

under harmonic loading, are shown in Fig.5. We observe & i |
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that response reduction increases and the required control
energy decreases with increase in m. This is because of
reduced approximations involved in writing equation (4).
However, we obtain less response reduction in time delay
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Fig. 4 Response of the system subjected
to ElCentro N-S 1940 loading.
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compensated case compared to the no time delay case, GUWOR T T 125038
while the required control energy approaches the same g K‘“mase incontrol energy  § ) %
value in the two cases. It was found by trial and error that g o [- responsc reduction N
by using R = 106 and Qy = 7.3 for time delay 3 with no ime delay 4 150 o
compensation case, the response reduction obtained is the g [ rosponse reduction 4 100 =3
same as with zero time delay case with weighting § 80 I forpc(:)m ns;w docase: %
mentioned in the beginning of the section. But, this results g L pe 150 7
in 19 % increase in control energy. = L. T 5
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The increase in control energy for different time delays ( Fig. 5 Response reduction and increase
B/Bmax ) has been shown in Fig.6. The increase has been _ in control energy versus .
calculated such that the response of the time delay %A 20.0 i T
compensated system is same as the response of the system 8w 15.0¢- - ’"/““
for zero time delay and weightings Q; =3.4and R=0.1. &% 10.0f - // —
The weightings for the compensated system had to be %Q 5.0 [ =
changed and were chosen iteratively. We observe not much % 0
increase in the control energy with increase in time delay. = 0 0.5 10 L5 20 2.5
ﬁ/ ﬁmax
Fig. 6 Increase in control energy with

time delay.
4. CONCLUSIONS: A method for compensation of time delay by modelling it as transportation lag has
been presented. The classical linear-quadratic optimal control has been used. The resulting control law
utilizes the response of the system as well as the past control forces. It has been shown that significant
response reduction can be obtained by using this technique. Also, there is not much increase in control
energy with increase in time delay. This technique ensures the stability of the controlled structure as well as
the desired response reduction.
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