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Introduction: In common practice of dynamic analysis, the cable-structure systems are modelled by
3D-finite element model where cables are simplified by equivalent tendon elements and thus global
vibration is obtained. Local vibration of cable, on the other hand, is obtained as vibration of cable under
fixed anchorages (Fig. 1). This separate treatment of local and global vibrations ignores the interaction
between them. The interaction, however, is shown to be significant (Ref. 1). It appears as internal
resonance; e.g., global vibration can excite cable local vibration resonantly, and vice versa. Investigation
of the internal resonance can be implemented using the 3D-finite element model by discretizing each cable
into small elements. However, number of cables in a structure are often many and hence numerical burden
increases in an intolerance level even under sophisticated computer.

This paper presents an alternative, global/local
mode approach,; i.e., total motions of the system can be
expressed in terms of global and local motions. The
global motions are 3-D motions of the structure
including quasi-static motions of the cables due to their
support movements and the local motions are the rest.
Using Lagrange's formulation, governing equations of @
global and local modes of a system with small sag cable
are obtained. The equations show that, at some
frequency tunings, internal resonance can be potentially

induced” through local-local and/or global-local ~< =~ ™"~ 7 =77 7 - "oy,
couplings. Only the modes related to these frequency i- s

tunings should be selected and employed in the (b)

investigation of cable-structure dynamics. Therefore, . . .

the number of degree-of-freedoms to be solved is small. Fig. 1. Schematic drawing of () Global

vibration; and (b} local vibration using a
Separation of cable motions: 3-D dynamic cable-stayed bridge.
motions of cable (uy, vp, and wy) are expressed in local

Cartesian coordinate (Fig. 2). They can be separated chal Cartesian
into two parts, quasi-static motions (denoted by coordinate of cable no. j

superscript (g)) and purely dynamic motions. ol

The quasi-static motions are the displacements of
cable which moves as an elastic tendon due to support
movements.  They satisfy the time-dependent
boundaries statically. The purely dynamic motions can y v"y[\
be treated by conventional procedure for cable with fixed Gy L
ends, i.e., separation-of-variables method. The
dynamical cable motions can be expressed as Global Cartesian
1) coordinate

ur(x,1) = ul(x,0)

L0 = v + Y Gu()ya(®) )
w0 = wiDeon + ) Ya(0)za(0) 3) Fig. 2. Local and global

Cartesian coordinate system

where y, and z, are generalized coordinates for out-of-plane and in-plane motions. Out-of-plane and in-
plane linear undamped mode shapes of cable with fixed ends can be employed for the spatial functions, ¢,
and y,,.

Global and local modes: Global motions (ug, vg and wg) are expressed in global Cartesian

coordinate. They consist of structural motions and quasi-static motions of cables. Using separation-of-
variables method, the global motions can be expressed in terms of global generalized coordinates (g,) and

components of global mode ((D,u, CD,V and (15,w).
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' (x,,2) The global modes may be the eigen-modes computed by

1“(7‘,}’:2,1)\ L 3D-FEM where cables are treated as tendons in the
v(x,y.z,t) = 2 gy @ (x,y,2){ (4 formulation. The effect of initial stresses should be
\w(x,y,z,t) f e T \@,w(x,y,z)j © included in the formulation. Local motions are the last

term on the right hand side of Egs. 2 and 3, i.e., the

purely dynamic motions of each cable. Thus, the spatial functions (¢, and w,,) are local modes of the
system. Interaction between the global and local modes is taken into account through the motions at cable
anchorages.

Application of global/local mode approach to a cable-structure system: The
global/local mode approach is employed in this section to obtain algebraic governing equations of a cable-
structure system. Derivation is based on metallic cable normally used in engineering practice. Finite cable
motions are considered. The cable sag is assumed to be small. Motions at the cable supports are also
small. Proportional damping is assumed. The global modes are assumed to be orthogonal.

Firstly, the local and global mode shapes are obtained; the local mode shapes are obtained from the
linear undamped model of cable (Ref. 2) and the global mode shapes from conventional FEM. The quasi-
static motions are expressed in terms of the motions at cable anchorages. Then, Lagrange formulation is
employed and the governing equations are obtained as (Ref. 3):

For kh global mode

Mk[(lk +2& g + kak] > z Ridn + Skniny + 2, > [Qiny? + 2Dl = (5)
J jon
For n* out-of-plane local mode of j** cable:

’myn(yn + 2§ynwynyn + a)gnyn) + Z Vnkyn()’[% + Z/%)\
(6)
l 2 2Bnkynzn + 2 20mqryn + Z Ryngr = Fyn ’(,‘

For nth in- plane local mode of j’h cable:
fmzn(zn + 2§znwznzn + wznzn) Z Vnkzn()’k + Zk)

+ z 2ﬂnk.znzk + z ﬁkn(y% + Z%) (7)
k k
1 + 2 2qur2n+ 2 Srnér = Fyn )
r r
where My, my, and m,, are generalized modal masses; &, Fig. 3. Topology of global-local and local
§yn and &, are modal damping ratios; @y, @y, and @, are -local couplings in arbitrary chosen modes

modal frequencies; gy, ¥, and z, are generalized coordinates; Qu,, Ry, and Sy, are coefficients of coupling

between global and local modes; Qn, Pin and vi, are coefficients of coupling between local modes; F g,
Fy, and F,, are generalized forces.

Internal resonance: Governing equations of local and global modes show that internal resonance is
possible to occur. Interaction between local modes is possible through quadratic and cubic couplings; i.e.,
internal resonance can be potentially induced with some frequency ratios such as 1:3, 1:2, 2:1 and 3:1
(Ref. 4). Interaction between local and global modes appears as linear and quadratic couplings and
internal resonance can be potentially induced with some frequency ratios such as 1:1, 1:2 and 2:1.
Topology of all possible couplings is shown in Fig. 3. By investigating the frequency ratios, the modes
whose frequencies are linearly and nonlinearly tuned can be identified and employed in dynamic analysis
of cable-structure system. Thus, the number of degree-of-freedoms to be solved is small. Warnitchai et
al. (Ref. 5) conducted a dynamic experiment on interaction of local/global motions using a small cable-
stayed beam model. Not only linear internal resonance, but also nonlinear auto-parametric resonance in
the model was identified in their experiment.
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