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1. INTRODUCTION

In order to predict the cyclic behavior of steels with yield plateau accurately, the authors proposed
a uniaxial two-surface model?), following experimental observations. However, when this uniaxial
model is extended to the multiaxial stress state, a use of the quantity called accumulated effective
plastic strain®(as abbreviated to A.E.P.S.) gives rise to a kind of difficulty because the plastic strain
in the multiaxial stress state can not be distinguished, for example, as the tensile and compressive
plastic strain in the uniaxial stress state. In the present paper, (1)the equations concerning the
A E.P.S. in Ref. 1) are modified for an easy extension of the uniaxial model to the multiaxial one
and (2)the slope of bounding line is assumed to decrease with increase in plastic work.

2. CALCULATION OF THE ELASTIC RANGE AND LENGTH OF YIELD
PLATEAU IN THE PRESENT MODEL

In the present paper, A.E.P.S. used in calculating the size of elastic range in Ref. 1)(i.e., Eq.(6)
in Ref. 1)) is replaced by the accumulated plastic strain (A.P.S.), & = [ de?, which can be written
in multiaxial stress state as:

o= [dr=| = det e} (1)

On the other hand, the A.E.P.S. used to calculate the end of yield plateau(i.e., Eq.(9) in Ref. 1))
is substituted by the maximum plastic strain(M.P.S.), &, =| €? |maz, that the material has ever
experienced from the beginning to the end of the yield plateau. In this case, the parameter M used
in the relationship between M.P.S. and the plastic work W7 is recalibrated from the experimental

data. The M.P.S. in the multiaxial stress state is expressed as:
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3. THE BOUNDING LINE SLOPE

The slope of the bounding line is usu- % Yoxb
ally assumed to be constant throughout the F,_/—‘.JE;Z%
whole loading history in the existing two-surface — Hi=1 "
models. However, it has been found in the — 1 B
cyclic loading experiments that the slope of the
bounding line decreases with the increase in 2%,
loading cycles and approaches a limiting value
of zero. As a result, the slope of the bound- _ : »
. . . . . 2I€2 €
ing line is supposed to decrease with the plastic _ ,
work in the present paper and expressed as fol- o -
lows. B X
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where Ef, represents the slope of bounding line
for the loading path after the i-th reversal load-
ing point(as shown in Fig. 1, for point C, i = 1
and ¢ = 2 for point D); WF is the plastic work

Fig. 1 Axial stress ¢ and plastic strain e?
curve in one cyclic loading
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accumulated from the beginning(i.e., point O in Fig. 1) until the i-th reversal loading point; EY
indicates the slope of initial bounding line which is obtained from the monotonic loading experiment
when the stress and strain curve reaches stable state; w is a material constant, which is determined
by the change of the bounding line slope in a one loading cycle experiment(i.e. the loading type (3)
in Ref. 1)). It should be noted that the slope of the bounding line is constant for one loading path
and changes only after reversal of loading.

4. MOVEMENT OF BOUNDING LINE

In the cyclic loading experiment, it is observed that the stress-strain curve will reach a saturated
state with the increase of plastic deformation. Therefore, the following expression is adopted in the
present paper to calculate the radius &; of the bounding lines or the bounding surface after the i-th
reversal loading point.

Ri = Roo + (Ro — Foo) exp (—CWT) 4)
where R is the radius of the initial bounding lines;
¢ and R, are the constants. They are determined
from one loading cycle experiment. The radius
of the bounding lines or the surface is defined as
half distance between the current bounding line
and the new bounding line along the stress axis
passing through the reverse loading point(see 2&;
for the loading path CD and 2%, for DF in Fig. 1).
Moreover, the plastic work W and W at point
C and D can be calculated from the experimental
data. By solving the following nonlinear equations,

{ R1 = Roo + (Ro — Foo) €xp (—CWT) (5)
Ra = Koo + (Ro — Roo) exp (—CWY)

the parameters K., and ¢ for various steels are ob-
tained.

5. EXAMPLES

With the above modifications, the prediction
for various steels is obtained. Ome of the exam-
ples is shown in Fig. 2 for the steel SM570. The
parameters used in the example are as follows.

0,=5.35x108(kgf/em?), w=0.00410,,
Ro=1.0190,, Fw=1.1170, and (=0.01370,.

The other parameters can be seen in Table 1in Ref.
1). At the same time, the prediction by the pre-
viously proposed model is shown in Fig. 3 for the
same experiment. It can be seen that the present
model is accurate enough and can be extended to

Fig. 3 The prediction with the previous

general case easily. model
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