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Introduction: Transverse vibrations of long cables are difficult to control by dampers
placed within the span. An attractive alternative approach is to control at the supports by
moving them longitudinally. This time varying boundary which causes variation of
transverse stiffness is herein termed "active stiffness control". A damping effect can be
produced by this scheme. The basic idea of Chen (Ref.1) is followed and energy analysis is
employed to obtain optimal control algorithm. A simple expression for equivalent damping
due to active stiffness control is presented. An experiment is conducted to verify the
control algorithm.

Algorithm for Single Cable: Fig. 1 illustrates a taut cable with fixed boundary at one end
and longitudinally time-varying boundary at the other. The movement of the boundary,
u(t), is driven by an actuator, and is assumed to be much smaller than the cable span, L. The
transverse vibration is considered to be confined in one plane.  Axial inertia force is
assumed negligible (Ref. 2). Employing Lagrange formulation, with the normal modes (sin
nnx/L) of fix-ended string as generalized coordinates, and neglecting the modal coupling
terms, the governing equations of transverse motion of the taut cable under a concentrated
harmonic excitation can be obtained in a nondimensionalized form as (Ref. 3):
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In the above equations, y, is the generalized displacement
of mode n; ¢n is the corresponding mode shape; &n is the !
corresponding critical damping ratio; uo is the static elongation ACTUATORY
from unstressed condition; K is the mass per unit length; L is the ( )—z*\ (D6a(0) 1t
cable span; ar is the amplitude of force; Q 1is the excitation vixt) =2 ¥altha o
frequency; xo is the point of application of the external force and Fig. 1 Models for analysis
®1 is the undamped natural circular frequency of the first mode.

Energy Analysis: Energy analysis is conducted to clarify the mechanism and the optimal
condition of the control. For simplicity, assume that the transverse vibration with active
stiffness control, yn, is harmonic with frequency n’ which is close to the undamped natural
frequency n. The control U is also assumed to be varied sinusoidally:

Yn =1y, €OS 0'T ; U=2y cos(sn'T + Yyu) (2), (3)
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where ay, s and Yyu are parameters of the control

algorithm that must be selected. s is a positive constant. CAMERA 2

It is well known (Ref. 2) that parametric excitation e 2 |3

occurs most easily when the ratio of the frequency, n, is 2 é

2. Since n’ is close to n, s=2 is a logical choice for Eq. 3. 21 camemn =
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inherent damping can be written, respectively, as : Fig. 2 Experimental set-up
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Equating the two expressions for Ep in Egs.

4 and 5, the damping effect that is

produced by stiffness variation can be evaluated in the form of equivalent additional

damping ratio &n:
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Eq. 6 implies that the optimum damping can be
obtained when Yyu is equal to 90°.

Steady State Response: In order to investigate
the performance of the active stiffness control
algorithm, an experiment, for the 15! mode, as shown
in Fig. 2 is set up using stainless steel wire. The
motion of the cable is confined in one plane. All
properties of this cable are shown in Table 1. The
cable is excited by a harmonic force.

If u(t) = 0, Eq. 1 is reduced to a well-known
Duffing equation whose steady-state solutions can be
analytically predicted (Ref. 2).  Analytical prediction
for the system with control effort can also be made
by using the energy analysis in an earlier section.
An equivalent damping term is employed to
substitute the control effects so the solutions for
Duffing equation can be wused by replacing
&1 by &1 + £l

The experiment is divided into two parts. For
the first part, ar is kept constant while Qis varied in
the neighborhood of ®j;. The steady-state response
with and without active stiffness control are shown
in Fig. 3. With active stiffness control, ay and Yyu are
fixed at 2.27% of initial elongation and 90° for all
excitation frequencies Q. In both cases, the
experimental results are well predicted by the
analytical solutions (thin curves). Large reduction
in response amplitude even with small ayconfirms
the effectiveness of active stiffness control.  The
second part concerns with the effects of au and Yyu on
the controlied response. The resonant peaks for
different 3. with optimum phase Yyu, and for
different phase Yye with fixed a2y, are shown in Figs. 4
and 5, respectively. The experimental results
confirm that higher additional damping can be
gained at higher 2, and the damping is optimum
when Yyu is 90°. In both cases, very good agreement
with prediction is obtained.

Another important feature of the active
stiffness control is that it can be applied to any low-
order mode. Control of 2nd mode with various values
of the amplitude 3, is experimentally studied under
the optimal condition (Yyu = 90°). The experiment
and the prediction, as shown in Fig. 4, are in very
good agreement and the effectiveness of the active
stiffness control is confirmed.

Table 1 Physical parameters of cable

Type/Material : Stainless wire rope, SUS 304 (JIS)

Metallic cross-sectional area (A} 2.055%10°3 cm?
Rope modulus of elasticity (E) : 1.74x108 kg/cm2
Pre-tension (T) : 83 Newtons
Span (L) : 208 an

Mass per unit length (H) : 0.07  kg/m
Fundamental natural frequency 8.28 Hz

Critical damping ratio of Mode 1 1,60x10-3
Critical damping ratio of Mode 2 1.89x10-3
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