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INTRODUCTION:

In the presence of control effort penalty in the objective function of the classical optimal linear regulator
problem, the maximum capacity of an actuator cannot be utilized fully. To utilize the available control energy
efficiently, the present study proposes a new control algorithm with the control effort penalty removed from
the objective function. As a substitution, an inequality constraint is imposed on the control effort magnitude
with practical limits of an actuator as bounds. A similar objective function with final time unspecified and
final states specified has been studied by Wonham and Johnson [1964] which led to singular control. On the
contrary, the present study proposes an objective function or performance index with fixed final time and
free final states which leads to a control strategy which is similar to bang-bang control.

FORMULATION:

To facilitate the presentation, a damped SDOF system will be considered, however the generality of the
proposed algorithm will not be violated. The equation of motion in the state-space form can be written as
X=X X; = -w'x;-2Ewx,rutu, (1a,b)
where u=f/m; u=f/m; x;=x; x,=X and f, f.are control force and
disturbance force respectively . The performance index (PI) is defined
as

J = %j (xt+qx})dt )
0

where q is a weighting factor and T is a specified final time. According
to the Minimum Principle of Pontryagin, the Hamiltonian can be
obtained as

H - %(x%+q X) *+ Mk - Lw'x, - 2E0AX, + A (utu,) 3)
The costate equations are obtained by taking the first derivatives of H
’ OH 5 oH
L= - =.x + =" =_ - + ,
A ox, XA A 5% gx; - A + 28w, (4a,b)
The optimal control u* that minimize J should also minimize H, which -
leads to the optimal control law u* = - u sgn(},) (5)

where u is the bound of u. By variational calculus, the boundary

condition at the final end can be derivedas A\ (T) = M(T) = 0 (6)

If we identify T as a time interval between two successive switching -
Fig.1: Control Strategy

times of actuator and T is very small we can expect the sign of A, is
constant in this small interval. The PI can be rewritten in instantaneous

form as ’f>°_
J = Lpam +qxm m |7 poman
The Hamiltonian and the costate equations reduced to b: A2=0
H = A% - Lw'x - 2Ewhx, + A (utu,) &) ol Domain Il = |
A= - gf(l, =M’ (%a) %ﬂ
7\.2 = . oH _ M+ 280N (9b) Domain 11

Ox, 250
And the boundary conditions at the final end becomes ) ut=+j
x(T)=M(T)  qx(T)=A(T) (10) 0 Xi

Fig.2: Domains of control activity
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In the numerical examples, the instantaneous PI will
be adpoted as objective function.The control stategy
is summarized in Fig.1. The inactive control intervals
could be explained by referring Fig.2. Lines a and b
are obtained by assigning u=u and u=-u respectively.
There are three domains of control activity. If the
initial condition (X1, X2) is located in domain I, the
optimal control can be achieved by applying u*=-u ,
while in domain II, by applying u*=u . In domain III,
the optimality cannot be achieved by applying
u*=u or u*=-u, and this study inactivates the control
action during the intervals with initial conditions
located inside domain III.

NUMERICAL EXAMPLE:

A damped SDOF system with mass, damping and
stiffness constants 1 Ns2/mm, 0.316 Ns/mm (5%
damping) and 10 N/mm respectively, is subjected to
random base excitation, 2% scaled down El Centro
1940, NS component earthquake time history. To
demonstrate the effectiveness of the new optimal
control method and the superiority to the classical
optimal linear regulator method with performance
index

T
] = %f (x+qx3+rud)dt (1n
0
the given system are simulated by both control
algorithms and the results are presented in Figs.3 to
5. It can be observed that the classical optimal control
law requires extremely higher maximum control
force, i.e. 125% higher as compared to that of the
new optimal control law. To measure the
effectiveness in utilizing the available control energy,
an efficiency factor is introduced

t1 t1
f u dt / f Uy dt
10 10

where Up,y is the maximum control force magnitude
during the period of simulation.

B = (12)

CONCLUDING REMARK:

The newly proposed optimal control law has been
demonstrated to be superior in efficient use of the
available control energy and in suppressing the
vibration level due to slowly varying sinusoidal
disturbance and random disturbance.
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Fig.3: Uncontrolled response
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Fig.4: Classical optimal control (q = 1.0, r = 0.065)
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Fig.5: New optimal control (q = 1.0)



