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INTRODUCTION: Viscous dashpots are often used to suppress cable vibration in cable-
stayed bridges. This paper studies the modal damping of cables in cable-stayed bridges
attached with a viscous dashpot. The analysis requires to solve a large complex eigenvalue
problem which, inspite of advanced computer technology remains cumbersome and time-
consuming. Hence, an attempt is being made to reduce computational time and cost by
proposing a "universal" empirical curve in graphical form to serve as a quick design aid for
a dashpot size and its location.

ANALYSIS WITHOUT SAG: The single cable is treated as a linear taut string with fixed

ends (Fig.1). The equation of motion in non-dimensional form obtained after introducing
the generalized coordinate usinf undamfed modal coordinate is as under:
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where {B}:{%};{ﬁf:{ﬁ;, Bz, v ﬁ;) is the amplitude of the generalized modal coordinate

and the differentiation is with respect to T, where T=Wpyt; tis time.
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The definition of various terms are as under: < L >
i= 1,2 n 2 E
j= 12, ,n T
C Dashpot Coefficient (N/m/sec) a C T,m E
L Length of cable (m)

m @ mass per unit length of cable (Kg/m) —

xc : Location of viscous dashpot (m) Xc

T : Tension in cable (N) .

n : Number of DOF Fig.1 Cable-model
0 : Kronecker Delta

Wor = f— \/_:g ; first undamped natural circular frequency of taut string

Note that the mass and stiffness matrices are diagonal but the damping matrix is non-
diagonal, i.e.,. the damping is non-proportional. Uncoupling Eq.(1) by the method suggested
by Foss, Ref[1] and transforming it into the eigenvalue problem, complex eigenvalues and
complex eigenvectors are obtained by standard subroutine.

PRACTICAL UNIVERSAL CURVE: The

equation of motion has three non-dimensional
2C X

arameters: namely, ) , (—c) and mode
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number J. Treating non-dimensional

_211_) as
mWg L
dashpot coefficient, grouping J with it, for given

(-’5"’—) one single curve covering all the six lowest

L »
modes could be obtained for modal damping ratio
Xc!

(MDR). As an example, modes 1 and 6 for (L) =0.02

15
are shown in Fig.2. However, large number of _;,Q_C__) J
degrees of freedom have to be considered to m WoiLL

obtain accurate values. Again, for the same value

¢ (Xc) h de 1 for d £ freed : Fig.2 Single curve for modes 1to 6
of {T-) the mode or egrees. o . reedom equal to for X< =0.02
20 and 100 have been shown in Fig.3. L
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0.02
Adopting the same approach, different cases of
() = 0.01, 0.02, 0.03, 0.04, 0.05, 0.10 were o0
calculated. It was observed that if the parameters = . . & % |
MDR 0. 01 ;
were regrouped as {( )J }and (Xc )
mWoiL ( ( ) 0. 005 -
even for these different values of (TJ-) , again all i :
. . A .
curves could coincide and a single curve was 50 100 1l 700 250 300
achieved. Thus, identification of the parameter (m )
WL,

{‘J“—mme) (L)} was the main cause in achieving

the universal curve.

Fig.4 shows the universal curve. The curve
relates modal damping ratio (MDR) with dashpot
coefficient (C). The curve is true for any mode
number and (xc¢/L) ranging up to 0.10, which has
been identified as the practical limit of dashpot
installation.

If the dashpot is installed at one of the nodes
of a mode, the additional damping acquired for that
mode would be zero. It can be noted in Eq.(4) also
that if either of i or j is equal to (1/(x¢/L)) or the T P D T
argument of sine is nm the equation of motion (1) 0.5 1.0 L5 20 25 3.0
gets uncoupled for that mode. That is why the me) (&){18(1.](&)}
factor (I-S(_LX&) has been used, so that everytime
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Fig.4 Universal Curve
this situation occurs, the X-axis takes on zero value
for which the corresponding value on Y-axis would
also be zero.

It was also observed from the results obtained
by eigenvalue analysis that the damped frequency
of vibration for different modes is not much
different from the undamped.

EFFECT OF SAG: In the linearized equation of

motion with cable sag, only the stiffness matrix
gets altered, which becomes

. i i
[Ki] = 2 55 422 {(1 (1)*)(1 (1)1)} © 0.5 1.0 L5 2.0 Z5 3.0
il D
where A =(%)2L/ (E—Aq Fig.5 Effect of sag

Noting from Eq.(5), antisymmetric modes (J=2,4,6,.....) are not affected by sag. As mentioned

in Ref.[2] , the extreme value of 2,2 for the cables in cable-stayed bridges is about 1.0. The
effect of this extreme sag situation is studied for symmetric modes. Fig.5 shows that only the
first (symmetric) mode is appreciably affected. The sag reduces the effectiveness of the
dashpot for the first mode.

REMARKS: In cable-stayed bridges, where cables of different L,T,m exist and for each
cable the value of xc may also be different, the proposed universal curve covering all the
lmportant lower modes ( not in Ref.[3] ) may be helpful for design purposes. Ref.[4] also
aims for the same, but the set of proposed equations has to be used once for each mode even

for one value of (x]j)

avoids any use of equations being graphical in form, and moreover, the accuracy has been
improved.
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for additional damping. The present curve is easier to use because it
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