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BACKGROUND The numerous methods of identification of dynamic systems that
have been proposed to date may be classified into three types: 1) identification of
input-output relationships; 2) identification of modal characteristics; and 3) identi-
fication of model parameters [1]. The present method is of the third type, where it
is assumed that an appropriate model exists whose form is known a priori. The
structure is modelled as a multi-degree-of-freedom linear system with viscous
damping: MZx+Cx+Kx=f where x is the vector of observable degrees of freedom, and
M,C.,K are time-invariant symmetric matrices which are to be identified.

The present algorithm is meant to be as straightforward as possible, so that po-
tential sources of errors may be easily recognized and avoided. Two or more de-
grees of freedom are considered, this being the first requirement in order that
closely spaced modes, if any, may be identified. Data from free vibration is used
{f=0), since this type of disturbance is simpler to apply to large civil engineering
structures than prescribed forces. The identification is done in the time domain,
since many frequency-domain methods fail to recognize closely-spaced modes.

METHOD For convenience, the second-order differential equation of motion with
n-degrees of freedom (dof) (Eq.(1)} is converted to a first-order equation with 2n-
dof (Eq.(2)) by defining vector y (Eq.(3)) and system matrix A (Eq.(4)):

(1),(2).{3).(4)

N -1 -1
Z+M Cx+M Kx=0  y+Ay=0 y={:} A=[ MC M K}

-I 0]

From measurements at discrete (digitized) values of time, the following data will
be available: displacements x;, velocities X; and accelerations X;, where i=index of
time. To reduce the amount of data that must be measured, velocities and accelera-
tions are obtained from displacement data with the use of a differentiator filter.
Band-pass filter is used to reduce noise in the original data. (Ref.[2], pp.20-24.)

The ideal goal is to find a system matrix A such that y;+Ay;=0 for every value of i,
i.e., at each instant of measurement. In practice, however, the identified A will not
exactly satisfy Eq.(2); the squared error in the equation at instant i may be denoted
as {yi+AyiT{y+Ayi), If there are N time stations, the total squared error is given by
Eq.(5) below. Elements A(k,m) of system matrix A, numbering 2n? for k=1,2....n and
m=1,2,...,2n, are selected in the present method such that criterion (6) is satisfied:

3o . oIl
H=2 {y+Ay; | T{yi+Ayi) — =0 (k=1,2,....n m=1,2,...,2n) (5),(6)
=1 JA(k,m]j

If z(k) represents the 2n elements in row k of A, then z(k) may be computed from a
system of 2n linear algebraic equations of the following form (Ref.[2], p.26):

Bz(k)=p(k) 7

where B=B(x;(k),x;(k),.X;i(k);i=1,2,....N;k=1,2,...,n); pk=px(x;(k),%x;(k),¥;(k);i=1,2,...,N).
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EXAMPLES Various examples of two-degree-of-freedom
system with nearly-equal frequencies and non-propor-
tional damping were simulated in free vibration, and the
respective elements of M'1C and M 'K could be identified
with very accurate results (Ref.[2], pp.27-31).

To test the method on experimental data, the cable-
and-girder model in Ref.[3] and Fig.1 was considered.
This structure was built with nearly-equal frequencies in
horizontal vibrations. In Case 1 (Fig.2), the cable and
girder were initially displaced horizontally and then re-
leased. Strong beating could be observed in the time his-
tories, suggesting a superposition of decaying sine waves
with close frequencies. For comparison, Case 2 (Fig.3)
was also considered where initially the girder was har-
monically excited at about 9.58 Hz. Free vibration started
when the exciting force was removed; less beating could rig.1 Cable-Girder Model
be observed. -
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Fig.2 Case 1 (time sampling int.= 0.005s) Fig.3 Case 2 (time sampling int.= 0.005s)

The identified parameters were:

Al =[ 0.2830 -0.0070] — =[ 3449.18  -17.02 } I
Cease 15 7750 0.1378 ) 5°¢ " M Kease15| 07963 3406.38 | 5C
Mlc ={ 0.0772 0.0145 ] 1 Ml =[ 3663.27  -36.63 ] 2
Case 27 _5.5230 0.2493 | °°¢ Kease25| 7516.00 3904.36 | 5°C

From the system matrix, natural frequencies and modal damping ratios could be
computed. Respective values may be compared for the two cases:

Case 1: 11=9.0722Hz; £,=9.5840Hz; {;=0.00178; {3=0.00184
Case 2: f1=9.2810Hz; £,=9.5800Hz; {1=0.00064; {3=0.00127

REMARKS The accuracy of the algorithm has been proved by simulated data, for
systems with closely spaced frequencies. The stability can be checked by deliber-
ately superimposing realistically random noise on the data. The total squared error,

II, may give an index of overall confidence on the parameters. However, accuracy
may not be very good when one mode (mode 2 in Case 2) strongly predominates.
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