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1. Introduction

Let T' be a smooth piece of curved surface in R?, having a smooth edge 8I". The elasto-
dynamic crack problem is formulated as follows: Find a displacement u;(x) and stress 7;;(x)
which satisfy the field equations

(1) Tij,j + p’ui =0 s
g(uij +uji) = Dijum in RP\T,

boundary condition and regularity condition

Tz?l?nj =1t; onT, [u;]=0 ondT

and the radiation condition, where D;jx, p, w and ¢; are the compliance tensor, density, fre-
quency and the traction given on I'. Also, n; stands for the unit normal vector to I, superposed
+ and —, respectively, indicate the limit from the side of I’ into which n points and the limit
from the other side, ; = 8/8x;, and [u;] = u;" —u.

The double layer potential approach for this problem uses an ‘integral’ equation
ti(x) = ptf. /rzijkl(x = ¥)ni(x)nu(y) fe(y)dSy, xeT
where fi(= [u;]) is the unknown vector function on I', and ¥ is a kernel function which satisfies
(2) Tikab k(X)) + Zjkap,ki(X) + 2p0? DijriSriap(X) = —pw?(8iajp + 616650 )6(x)

with Dirac’s delta §(x). With f, one computes 7;; by

rii(x) = /F Sisu(x — Y (),

and u; by using (1).

A difficulty inherent to the numerical analysis based on this approach is the strong singu-
larity of £(x), which is of the order of [x|~* as |x| — 0. This singularity is usually removed
with the help of the “regularisation” [1][2]. In [1] Nishimura & Kobayashi have shown that this
regularisation is carried out in an automatic manner, once one finds a decomposition of the

form
(3) Tiiki(x) = (curl )i(curl };(curl Yx(curl 3@ (x) + ¥jjr(x)

where & and ¥ are kernels which behave essentially as O(]x|) and O(|x|™') as |x| ~ 0, respec-
tively. @ is called the stress function for 3. We here present explicit formulae for ¢ and ¥ for

the general case of anisotropic elastodynamics.
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2. Results

Using Voigt’s notation we rewrite the Fourier transform of (2) as
(K — p’D)S = pw?l,

where ” indicates the F.T. with respect to x (x — &) and K is the 6 x 6 version of the F.T.
of the differential operator in (2). Obviously one has

- _ f(K — pw?D)}T
4 Y =(K — 2 1 2 _ {CO 2
) ( po D)™ pu det(K — pw?D) e

We have the following results:
(a) The determinant in (4) can be factored out by (pw?)?.
(b) The cofactor in (4) can be factored out by (pw?)2.

(c) The F.T. of the stress function ® in (3) is written as

("b = (5ks6lm + 5km613)(6ia6jc + 6ic6ja)etunebvdé'ué-vDstamencd
H 2[det(K — pw?D)/(pw? ]
_ (DitivDinja + Dusiy Dinja + Ditjp Dinia + Disjs Dinid)erunehvabuto
2[det(K — pw?D)/(p?)’] |

(3)

3. Concluding Remark

It is seen that the present formulation does not destroy the causality in time domain. This

is, however, not to be the case with the Nédélec formulation given in [2].
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