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SUMMARY Explicit formulas for modal frequencies, damping ratios, and
complex-valued mode shapes of a two-degree-of-freedom(2-DOF) system
are obtained through a new general perturbation technique, which as-
sumes only that the damping nonproportionality is moderate or less.
Subsequent parametric study of conditions rather common among com-
posite systems of single-degree-of-freedom(SDOF) structure plus
tuned mass damper (TMD), shows that moderate nonproportionality in
damping has negligible effect on modal frequencies and damping
ratio, but significantly affects the mode shapes.

PERTURBATION OF EIGENPROPERTIES For multi-degree-of-freedom(MDOF)
systems described by Mx+Cx+Kx=f (where: x = vector of displacements
in n degrees of freedom; f = load vector; M,C,K = mass, damping,
stiffness matrices which are real-valued and symmetric; M,K are
positive definite; C is positive semi-definite), the natural mode
shapes, ys, and corresponding frequencies, A;, are defined such that
each x; = yjexp(ist) is a solution of the homogeneous equation Mx+
Cx+Kx=0. The resulting characteristic equation is:

(A32M+ 4;C+K)y,y; = O , jJ=1,--,r,--,n,n+l,--,n+r, -,2n (1)
where the (n+r)-th solution set is complex conjugate of the r-th
set. y3; is complex-valued when CM-*K # KM-2C. The authors [Ref.1]
developed a second order perturbation technique to obtain 1, and y,
from Aoy and Yoj, the latter being solutions of another characteris-
tic equation

(Ko?M*‘}.o_jCP"‘K)YOJ =0 , Yoy = real-valued vector (2)
where Ce = C-Cn; CeM 2K = KM~-1Cs; and the elements of Cn~ are assumed
to be one order of magnitude smaller than those of Ce.(This pertur-
bation is expected to be good approximation even for system with
high overall damping, provided the nonproportionality of damping is

indeed weak or moderate.) Modal damping ratio, ¢, and "undamped”
modal circular frequency, o, are defined from A as follows:
As = -85 w3 =1 Vi-E5%w; s J=1,---,n (3)
Aos = —foswost 1 V1-EoFwos , J=1,---,n (4)
where 1= +-1 . Note that wy; is also referred to as "pseudo-

undamped"” frequency, because it is actually affected by level of
damping. In contrast, wosy in Eq.4 which applies to proportionally
damped system, is not affected by é&oj.

APPLICATION TO 2-DOF SYSTEM The above-described approximation of
eigenproperties w;, &5 and y; of nonproportionally damped system,
leads to important physical insights when applied to a 2-DOF system
as in Fig.1. For generality of discussion, the following nondimen-
sional parameters are used: mass ratio, g = Mr/Ms; tuning parameter,
T = wr/ws; damping ratio of TMD subsystem, ¢+ = Cx/2Mrwr ;and damp-
ing proportionality, & = Es/¥&x for Ex# 0.

The pseudo-undamped modal frequency wy, modal damping ratio &;,
and complex-valued mode shape yj, for j=1,2, are approximated by the
following explicit formulas.

w3 = woyV(1+asx) » (JL,k) = (1,2),(2,1) (5)

E3 = Fos+(1+B51) (8)

¥3 = (Fos+{iuYox) *+ 1(n3u¥You) (7)
where woyjs, o3 and yoy; are solutions of Eqs.2 and 4, namely:

Wo3 = WsO3 (8)

Fos = Ex[8(t®-0;52)2+puto3*]/[os{(t%-052)2+pur*}] (9)
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Yos = {ia/(ehog,y} 1A/TIrale=/ (> 0;=) 1210 (10)
021,z = [(1+72+pt2)F (1+12+4cZ)2-472 /2 (11)

and ajyx, Biywx, 1w, 73 are real-valued functions of ©, g, &, E&r.
These functions become zero when 6 equals 1/t , i.e. when the damp-
ing becomes proportional, or when 6 =1 and & = 0. See also Fig.2.

2

%}: ﬁo"%fog(m{ _GJZ)_ZUK(EOJUK_EOKUJ)}2] (12)

Biwx = 1+](;Jk [DJK gf \EOJGK EOKUJ)H2+D :E (fog (2575 foxUJ)}—aJk] (13)
C3:x = [03F03(052+0k2)-2F0k0520] p/Dyx (14)
sk = [03¥1-F0F (0;%-012)10/Dyx (15)
Diw = 2(052+0u2) (Eo,305-Fouon)? _
+ (032~0k2){(032-0k2)-2(FoF03%-EoBor?)} (18)

p = 28c(8-1/0)Jur®/[(1+ 72+ u12)2-477] (17)

DISCUSSION Comparing wjy, &3, and a norm of y; as obtained presently,
with corresponding "exact" values from conventional matrix iteration
procedure, indicated that the percentage difference, i.e.|[perturbed
- exact]/exact| x100%, is 1% or much less in all cases concerned in
Fig.2. An advantage of the present perturbation technique is that
very large magnitudes of the coefficients ajx, Bix, {3k, 73 themselves
would be the indication of large perturbation errors due to gross
violation of initial assumption, i.e. moderate nonproportionality.
In the present examples, moderate nonproportionality of damping
has little effect on modal frequencies and damping ratios. Eq.7 and
Csx, 73 from Fig.2, however, show how classical real modes are
"coupled” to form complex modes. Egqs. 5-7 shall be very useful in
physically interpreting complex-modal superposition equations.
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(a) Varying 6 (b) Varying =t (¢) Varying pu (d) Varying é&x
Fig.2 Coefficients indicating effects of damping nonpropor-
tionality, as in Egs. 5-7. (a)r=1.0, p=0.01, Er=0.1; (b)6=0.75,

©=0.01, £r=0.1; (c)d6=0.75, 7=1.0, £x=0.1; (d)é=0.75, 7=1.0, u=0.01.
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