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INTRODUCTION: The optimization of nodal coordinates in discrete structures is one of
the most difficult tasks in structural optimization. The literature on shape
optimization is rather sparse. Saka[l] presented a method which obtains the optimum
joint locations while employing stiffness constraints for the structure as a whole. The
stress constraints are complex and nonlinear functions of nodal coordinates and joint
displacements.

This paper presents a contribution to the shape optimization of structures. The
stiffness equations are written for each member independently, rather than the
structure as a whole. This helps to reduce nonlinearity of constraints.

FORMULATION OF DESIGN PROBLEM: If stiffness equations are considered seperately for
each individual member, rather than the structure as a whole, additlonal constraints in
the form of nodal equilibrium equations need to be considered. Continuity at nodes is
ensured by defining unique values of displacements, in the global coordinate axes, at
each node. Further, the stress constraints are linear functions of member axlal force
and cross sectlonal area. The resulting nonlinear optimization problem is solved by
the Lagrange multiplier method. The design criteria 1s that the stresses and/or
displacements in a structure should not exceed certain permissible values.

Selecting an appropriate optimality condition, the design problem may be formulated
as:

Minimize W = W(A.xc) subject to:

J

n
nodal equilibrium constraints: [ E (FIJ) ]J - PJ =0 ;3=1, ..., N; (1)

1=1
member stiffness constraints: Fij‘ Kij(Aij'xci'ch'xdi'de) = 0;1J=1,..,NM (2)
stress constraints: ‘Fijl_ Uip Aij <0; i=1,...,N\M ...{(3)
joint displacement constraints: -4 < {de) < A ...(4)
Joint coordinate comstralnts: X, < {XCJ) < X, ...(5)
non-negativity constraints: A, (Xcl) >0 ...(8)

where A= vector of unknown areas, PJ= glven external load vector at joint jJ, XdJ and
xcj‘ vector of joint displacements and coordinates respectively, at joint J; Xl and Xuz

lower and upper bounds on Xc; cp and A= permissible values imposed on stresses and

displacements, respectively; F1J= force In the member lying between nodes 1 anh i: N=

total number of joints; NM= total number of members; and nJ= total number of members
connected to joint j.

For determinate structures, only Egns. (1), (3), (5), and (6) may be considered.
However, such a consideration for an indeterminate structure gives an incompatible
structure under the =zero loading state; prestressing of members shall have to be
employed 1in the construction phase. The designer may weigh the additional cost of
prestressing against the saving of material and select the final design. If the
objective function is taken as the weight of the structure,
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NM

¥ = &£ piAiLi where pi. Ai' material density and cross-sectional area, respectively,
1=1

of member 1. The member 1length L1 is expressed in terms of joint coordinates.

An example stiffness constraint in Saka's[1l] formulation for the two-bar truss shown
in Fig. 1 1is:

-3, 2 3., 2 £3. s =3 . -
ECAILTX] * Agly (xpmx))TIxgy + [AILyxyy- Ajly (Xpm %)% My ) = Hi

L1=(x§*y§)l/2; L2=((x2- x1)2+y§)1/2; and permissible stress constraint for member 1 is:

2 2 .
lelxdl + ylLlydl < °1p /E: compared to this, member stiffness constraint for member 1

. - -2 .
in the proposed formulation is: Fl— EAlLl (xlxd1+ ylydl). and permissible stress

constraint is: F1 - °1pA1 < 0 ; where X and ¥y = the coordinates and X41 and Yq1 =
the horizontal and vertical displacements, of node 1.

DESIGN EXAMPLE: The bridge shown in Fig.2 was considered as an example for design.
The horizontal and vertical displacements of the joints were limited to 10 mm and 20

mm, respectively. Allowable stress in tension is 0.14kN/mm2. and in compression the

s
lesser of 0.14kN/mm" or 0.154r EA;* /L [1,2]. The modulus of elasticity is 210kN/mn_ .

Joints 5 ,and 6 are on the symmetry axis. Joints 1, 3, 7, and 9 are allowed to move
only horizontally. Both the approaches mentioned earlier were applied for design. The

optimal solution by both methods differ significantly in geometry and are listed in
Table 1..

‘fuble 1. Optimal solution
Variable Initfal Design Design

design ‘a’ N
Xeo 4.000 6.000 6.000
Xe3 8.000 9.972 11.500
Yes 8.500 9.000 9.000
xcs 4.000 5.498 5.932
Yes 7.000 8.133 7.830
Xo7 8.000 10.937 11.500
Fig.l Two-bar truss Yo  5-500  5.244  4.487
Al 3000.0 272.0 103.5
structure symmetric A2 A 3000.0 4369.1 4976.9
about Y-axis; 8 2
P=300KN (12.0,4.0) Ay 3000.0 100.0 100.0
Fig.2 Design Example A, 3000.0 1859.4 2054.8
! - A 3000.0 1428.68 1428.6
(0,0) X 5 4 4
Volume 29.02x10" 15.84x10 11.08x10’
CONCLUSIONS: The proposed method does not suffer coordinates in meters: volurzne in mm :
from the weakness of repetitive analysis of the area of cross-section In mm }
Design’a’'- member stiffness equatlons
structure during the optimization process. not considered; Design'b’- member
Optimum shape can also be determined for multiple stiffness equations also considered;

loading on the structure. The method offers the
flexibility to cope with a variety of engineering

Table 2. Bounds on variables.
and architectural requirements like a joint of a

vVariable Lower bound Upper bound
truss being restricted to move along a fixed line. Xear Xeg 0.10 6.00
REFERENCES: 1.Saka, M.P., "Shape optimization Xear Xe7 532 :1830
Yes . .
of Trusses,” Journal of Structural Division, ASCE, vy 0.00 9.00
c6’ Yer . :
Vol. 106, No. ST5, Proc. Paper 15437, May, 1980. Aj... Aglmn®) 100.0 none
2.Manual of Steel Construction, American Institute coordinate values are in meters;

of Steel Construction, 1970.
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