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INTRODUCTION

Certain bridge towers have in-plane vibration modes of closely-spaced natural
frequencies. Galloping behaviour of such a structure has been studied by Fujino et al.
[1], Phoonsak et al.[2]), They found that stable galloping of such a structure is
motion either in lower frequency mode or in higher frequency mode depending upon the
initial conditions. The multi-mode galloping is unstable. These results differs from
the results obtained by Blevins et al.[3].

The present paper which is the continued work from Ref.l and 2 attempts to analyti-
cally examine the conditions for stable multi-mode galloping and also to compare the
results with observation from wind tunnel experiments.

EQUATIONS OF MOTION AND ASYMPTOTIC SOLUTION

Using the assumption of linear continuous structure and nonlinear quasi-steady wind
force, the modal equations of motion for first mode, y, and second mode, y, can be
expressed as

Vit 03y, = a,¥,% @, §i% a,7,¥,+ a4§§+ us§i+ a6§i§z+ a7§1§§ + 0.3, (1a)
Vot 03y, = Byt BoYit BiVuVat BYEt BVt BVt B.Y.3 + BuVi. (1b)
where a@,- o, and B, - B, are function of mode shape, wind velocity and structural

properties.
To solve Eqs. la and 1b, the nonlinear terms are assumed to be very small
which can be characterized by a parameter €. The solution is assumed as

y,(t) = a (t)cosl, +ey,,(a,,2,,2,,0,), y,(t) = a,(t)cos Q,+ey,,(a,,a,,0,,8,), (22,2b)

where 0, = o,t - 5,(t), @, = w,t - 5,(t) - 8,(t).

The variables a,,a,,Q ,and Q, are assumed to be slowly varying functions of time t.
The case wlé w, is considered. To express the closeness between these two natural
frequencies, the detuning parameter o is introduced as w, = w,+ €0, Performing certain

algebraic manipulations leads to the equations for steady—state response as

4, = 0.5 a,a, + 0.375 w2ala, + 0.25 w2a,a2a,[1 + 0.5 cos 2A]

+0.375 [w,0,a2a,a,+ wiala,/w,] cos A, (3)
52 = 0.5 a,B, + 0.375 wZajBf,+ 0.25 w2aZa,f, [1 + 0.5 cos 2A]

+0.375 [w,0,a,a2B,+ w}ajB,/w,] cos A, (4)
éz = {- 0.125 [w2alda,B,+ wia,ada,] sin 2A - 0.325 [w}aif, /uw,+ w}aie,/w,] sin A

- 0.125 v,0, a2a2 [ ag + B, ] sin A } / (a,a,), (5)

where A = got - §,, A =¢e0 - 3,.

Steady—state.amp}itqde a, and a, and phase lag 8§, can be obtained by applying the
conditions that a,= a,= §,= 0 in Egs. 3, 4 and 5. Stability of the steady-state
solution must be examined by considering the small perturbations at the solution
point.

ANALYTICAL EXAMPLE AND EXPERIMENTAL COMPARISON

In Eq. 5, if both P, and @, are non-zero, both a, and a, must be non-zero in order
that 6,=0, i.e. only steady-state multi-mode galloping exist. These two parameters,
B, and a,, are non-zero for certain bridge towers, for example tower with unsymmetri-—
cally distributed mass or tower with irregular cross—section. Then, the bridge tower
in Ref.l which is modified by adding a small mass at one leg of the tower as shown in
Fig.l is employed as the case study.

Steady-state solutions and their corresponding stability of this tower are examined
at various wind velocities. It was found that the solution of a,= 0 and a, = 0 is
stable, i.e. no galloping, when the wind velocity is less than the onset wind
velocities (U<Ucr,,Ucr,). It is very interesting to note that when U)Ucr, but U< Ucr,,

680



+ARBEEQEF R HES (6259 A7)

50 g. added
YA B
% : [ 1st MoDE 2y *2 210 22
;
“x ! ! ~——— STABLE
i .
iof — — — UNSTABLE _—
: | Na a, ¢
2 2
o3 ﬂl
e e~
—_— R
2 2
§
2 & 1 s x/w . JA/T

2nd MODE ezt
(/\\ EY -1.0 0.0 1.0 -1.0 1.0

. 0.0
a) Uer,<U<lUery b) U>Ucry, Ucr,

Fig.2 Steady-state multi-mode solution.

a

1
T TR A + B (FIRST MODE DOMINANT)
Fig.1 Bridge tower employed .
in case study.

only the multi-mode gallop—
ing is stable as shown in
Fig. 2a. At higher wind
velocities (U>Ucr,,Ucr,),
the multi—mode galloping is
stable as shown in Fig. 2b.
Fig. 2 indicates that in
the multi-mode galloping PSD OF A+B PSD OF A-B PSD OF A+8 PSD OF A-B
the stable steady-state
amplitude of the first mode

is less than that of the

second mode. This is LJ N ‘l " | L. | ©
because the structural Wy Wy @2 Wy Wy wyp ¥y
damping of first mode is PSD AT TRANSEINT PART PSD AT STEADY-STATE PART

greater than that of second
mode. It is also found Fig.3 Time history response and power spectrum density
that each modal amplitude (PSD) obtained from wind tunnel experiment.
slightly changes accord-
ing to the value of A. The stable solution depends only on the initial phase lag.
Galloping behaviour of this tower model was also experimentally studied in the wind
tunnel. It was observed that only the multi-mode galloping was stable, Time history
responses from the rest position and their power spectrum density at UdUcr, and UdUcr,
are presented in Fig. 3. Initially, the tower oscillated mainly in the second mode
motion., As time passed the first mode motion gradually increased along with the
second mode until both reached the stable multi-mode motion, The response power
spectrum density further verifies this phenomenon, With respect to the coexistence
of two modes in galloping, the experimental results agree with the analytical results.

CONCLUSION REMARK

For tower of certain properties, such as unsymmetrically distributed mass or
irregular cross—section, the analysis indicates that multi-mode galloping is stable.
Modal steady-state amplitude slightly depends upon the initial phase lag between the
two modes. Analytical results were verified by the wind tunnel experiments.
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