II-84 PARAMETER IDENTIFICATION FOR SIMULATION OF INFILTRATION PROCESS

Katumi MUSIAKE : Professor

Srikantha HERATH: Graduate Student

Tokyo University

1. INTRODUCTION

The solution of Richard's equation requires a prior knowledge of soil moisture characteristics in the form of moisture-suction (θ - ψ) and conductivity-suction (k - ψ) relationships, and various models are used to represent these relations. As the soil properties as well as th θ - ψ -k inter-relations vary considerably from soil to soil it is necessary to identify proper models and estimate their parameters. θ - ψ RELATIONSHIP

Moisture-suction data obtained from 24 Kanto-Loam soil samples at depths ranging from 60-600 cms. were tested against four models for their applicability. The parameters in each model were computed by an optimisation technique based on sensitivity analysis. The models considered were

2)
$$\theta = (\theta_0 - \theta_r) \exp \{\alpha (\psi_{cr} - \psi) + \theta_r\}$$

3)
$$\theta = (\theta_0 - \theta_r) \ln(\psi - \psi_{cr} + 1) / \ln(\psi_r - \psi_{cr} + 1)$$

4)
$$\psi = \psi_{cr} \{ \theta / \theta_{o} \}^{-b}$$

Fig. 1.

The model 1) was found to yield the best agreement with the observed data as shown in the fig. 1.

3. k - w RELATION

Unlike the θ - ψ data, k - ψ data cannot be easily obtained from the laboratory sample tests. The experimental data appears to be sensitive to the method employed and sampling. Therefore $k\!-\!\psi$ relation is decided beforehand and the saturated conductivity is identified by optimising the parameter in a fully implicit one-dimensional numerical model of Richard's equation by comparing with double-ring field infiltration test data.

$$k-\psi$$
 relationship is represented by the model $k=k_0$ Seⁿ where Se = $(\theta-\theta_r)/(\theta_0-\theta_r)$: n = .015 w+3.0 and w = $\int_0^{\psi_r} \gamma \psi \ d\theta$; ψ_r = 15 atm.

For the estimation of $k_{\stackrel{\circ}{0}}$,let $\widehat{\mathbb{Q}}$ be the infiltration computed by the numerical model for one-dimensional Richard's equation at time t for an arbitrary initial estimate of $k_{\scriptscriptstyle O}$ and Q be the observed infiltration rate. $\hat{Q} = \{k(\partial \psi/\partial z - l)\}^{t} = \Phi(k_0)$

This equation can be written for many data points so that a matrix equation results, which can be solved by regression techniques for $\Delta \stackrel{k}{\sim}$. Taking the new parameter as $k_0 + \Delta k$ the iteration procedure is continued until Δk becomes negligibly small.

The algorithm was validated by a numerical example shownin fig. 2. By taking simulated results for $k_0 = .001$ as observed data k_0 was

computed with initial estimates of k_0 = .01 and k_0 = .0001. The computed k_0 value converged to the true value within four iteration in each case.

Field infiltration data were obtained using double ring infiltrometer with inner cylinder diameter $10~\rm cms$. and outer cylinder diameter $50~\rm cms$. Saturated hydraulic conductivity was computed using the above method and an example of the results is shown in fig $3~\rm cms$. 4. RESULTS AND DISCUSSION

Model 1) was identified to as the best fit model for the moisture-suction relationship for the Kanto-Loam soil. The parameters involved could be easily computed by the optimization technique using about 10 data points. The saturated hydraulic conductivity can be estimated by analysing the double-ring infiltration test data using a numerical model. The method described is stable and converges rapidly to the optimum parameter value. Field variability of k can be identified by performing several tests scattered over the area. $^{\circ}$

The parameter n in the $k-\psi$ relation too can be identified by the same manner, or else the method can be extended to identify parameters if a different model is selected for the representation of $k-\psi$ curve. In that case equation (1) becomes

$$Q - \hat{Q} = \frac{\partial \hat{Q}}{\partial P} \cdot \Delta P_i$$
 $i=1,m$; $P_i = ith parameter;$ $m = number of parameters$

 $\frac{\partial \hat{Q}}{\partial P_i}$ terms can be computed by differentiating $\hat{Q} = \int_0^{z_0} \frac{\partial \theta}{\partial t} dz - k_{z_0}$ to give

$$\frac{\partial \hat{Q}}{\partial P_{i}} = \int_{0}^{zn} c(\psi) \frac{\partial \xi}{\partial t} dz - \frac{\partial k}{\partial P_{i}} zn \quad \text{where } \xi = \frac{\partial \psi}{\partial P_{i}} \quad \text{and } c(\psi) = \frac{\partial \theta}{\partial \psi}$$

The sensitivity coefficients ξ , can be computed by differentiating the governing equation with respect to each parameter and solving together with the governing equation. Sensitivity equations take the form $c(\psi)\frac{\partial \xi}{\partial t} = \frac{\partial}{\partial z}\left\{\frac{\partial k}{\partial P_i}\left(\frac{\partial \psi}{\partial z} - 1\right) + k\frac{\partial \xi}{\partial z}\right\}$ REFERENCES

1) Decoursey D. G and W. M. Snyder (1969) Computer Oriented Method of Optimising Hydrological Model Parameters, Jrnl of Hydrology 9, pp 34-56 2) Havercamp, R., M. Vaclin, J. Touma, P. J. Wierenga, and G. Vauchad, G. (1977) A Comparison of Numerical Simulation Models For One-Dimensional Infiltration, Soil Sci. Soc. Am. J., Vol 41, pp 285-293

Fig. 2. Validation of Optimisation Algorithm.

Fig. 3 Computation of k from Field data.