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1. Introduction
The system of dam-reservoir is usually discretized and analysed using an

Euler-Lagrangian FEM formulation, 1i.e.; the dam nodal parameters are displacements
whereas those of the reservoir are pressures. Although the method is effective, but
involves asymmetric and very large banded coefficient matrices when the system of
equations is to be solved, so very special treaitments and algorithms are needed for
the calculation of response or the non-standard eigen problem. Here a full Lagrangian
formulation is adopted for both fluid and solid domains with which the standard FENM
programs could be employed ,and the interaction is naturally considered while the
interface nodes have 2 independent set of tangential motions to admit smooth slipping
over there. This could be guaranteed by interface elements or other methods. In this
work curved zero thickness isoparamefric elements are used for this purpose. Energy
radiation 1into infinity is approximated by the Sommerfeld condition. At last the
effectiveness of such formulation is inspected for a vertical flat rigid dam or
tentatively for a flexible arch danm.
2. Theory

Dam could be discretized just by standard Lagrangian FEM to give its contribution
to the property matrices. The reservoir could be discretized in the same manner’ if
one notes that under seismic transient shocks the fluid motion could be assumed

small, compressibie, and invicid. Besides, for stability considerations an
irrotational constraint is applied using penalty function technics. The main and
constraint constitutive relations for the fluid media are expressed as P = k .divl

,and {1} =[D*Jcurll respectively, where U is displacement, k is the bulk elastic
modulus and [D*] is a diagonal rotationall elasticity matrice with very large
elements. Variation of the potential energy of such fluid element yields;
[Krl= jv [B1* [D] [BJdV as the stiffness matrice (which should be computed by the
reduced 1integration technics). [B] is the matrice obtained by the product of the
strain operator and the shape function [H], and [D] is the diagonal matrice of the
total elastic properties defined above. The shape function H should be from the
Lagrangefamily due to the penalty function considerations. Morever it is desirable to
have an account for the gravity surface waves, for which the linear wave theory was
employed to augment the stiffness by {S]= j; {hi” w {h}dA, where {h}Tis the one row
of [H] corresponding to vertical directioh and w is the unit weight of water. The 3D
interface'' element has an infinite (large) normal and two zero tangential
stiffnesses, thus reflecting the actual phenomenon between water and the dam. The
only contribution of this element is an stiffness part. The global property matrices
[M1, [C], and [K] are assembled over the three element types to give the equation of
motion as;
MI{a} + [¢I{a} + [K1{a} = -[MIfas} with {a] as the nodal displacements. As for the
boundary conditions, the free surface was treated similar to an elastic foundation as
discussed above but the infinite media should be represented by a special B.C.
admitting the energy propagation into the infinity. According to the assumption that
at far enough distances from the dam the wave front might have a planar shape normal
to the progression direction, Sommerfeld radiation condition;
dUn/dn = -Un/c was adopted for the reservoir truncated boundary. Morever for the
reservoir bank a partial radition modified by the relative impedance 3 =¥Vp/c %, ¥as
used as its significance is noted by many authors. The latter B.C. is expressed as;
dUn/dn = -U./(@c). Here n is the boundary normal direction and U, the normal
displacement. ¢ and Vp are the compressional wave velocities in water and in the bank
material and ¥, .or ¥ the mass density of each. Note that the damping matrice thus
formed, is nonproportional and should be augmented by any internal damping.
3. Numerical Results

Both solid and fluid elements were taken as 3D 8-noded isoparametrics while the
interface element was 4-noded. The integration order used was equal to one for the
fluid element but equal to two for others, The rotational elastic moduli was assumed
as high as 100 times the bulk moduli (k=211510 t/m?). A vertical 3.™ thick,-60.™ high
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and 60.™ long cylindrical dam was solved against a reservoir of length 2H. Despite
the coarseness and non-compatibility of the two meshes the static case (i.e; under
the gravity action) indicated results well in agreement with the case in which the
hydrostatic load is applied as a surface traction. The modal extraction of a simple
rectangular reservoir of 5.08x1.905" size was also excecuted. The spectrum is
composed of three distinguished parts; zero energy, sloshing and impulsive modes. The
Ist sloshing,and the Ist impulsive modes were in agreement with their analytical
values neglecting the 3.% and 1.% errors respectively. Furthermore the maximum steady
state hydrodynamic pressure on a flat rigid watl of 60.™ height and 60.™ length under
simple harmonic horizontal motion of the wall was obtained using this formulation.
Good agreement with the analytical solution was concluded when the excitation
frequency N was lover than the Ist natural frequency of the reservoir A§NR. In this
case the radiation B.C. does not control the result in contrast with the case N > N®
in which the solution is very sensitive to the B.C. and it essentially should admit
the radiation.
4. Conclusions

The new method of FEM formulation for the fluid-structure interaction works
promis ingly well. Its merit is its relatively simple and smart algorithm to solve
the complicated dam-reservoir system. It could be implemented by adding one or two
new types of elements to the element library of the existing FEM programs. For the
response analysis step-by-step integration is recommended.
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