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1. INTRODUCTION

Generally, to consider galloping instability of flexible structures
such as bridge towers or cables, structure is assumed to vibrate in the
single mode shape whose natural frequency is the lowest one. However,
when the onset wind velocity of the lowest mode is nearly equal to that
of the higher modes by attaching TMD [1] or when the higher mode
frequency 1is nearly equal to the lowest mode one, the higher modes may
participate in galloping oscillation [2]; the "single vibrating mode"

assumption 1is not any more valid. This paper presents the results of
wind tunnel experiment using bridge tower model whose natural frequency
fi. = £, and also attempts to explain experimental observations by

nonlinear analysis using the slowly varying method.

2. WIND TUNNEL EXPERIMENT OF BRIDGE TOWER AND DISCUSSIONS

Three dimensional model of bridge 240
tower, as shown in Fig. 1, was used in ]
this experiment. The top portion of this
tower 1is very long then the in-plane
second mode frequency (7.75 Hz.) |is
nearly equal to the in-plane first mode
frequency (7.25 Hz.). Their mode shapes
and frequencies are shown in Fig. 2. The
wind tunnel experiment using this tower
was carried out under uniform wind flow
whose direction was perpendicular to the
tower. There are two interesting
observed phenomena to be pointed out in
this experiment.

The first one is that self-excited
vibration occurred firstly with the
second mode at wind velocity above 2.3
m/s while +the first mode self-excited
vibration was stated at somewhat higher
wind velocity about 2.5 m/s. Note that
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each mode. At high wind velocities,

selection of the first mode or of the
second mode in steady-state response was
found to depend on the disturbances
given to the tower.

The other interesting observation - o "~ T1st wooE
is that at high wind velocities, when i o ]
tower was galloping in first mode
steady-state amplitude, sometimes T

without any exteranl disturbances, the
first mode amplitude started to decay R
while the second mode growed up and OB
finally reached the steady-state motion SR e
as shown in Fig.3. This phenomenon can SR
be explained by the effect of coupled
aerodynamic force as shown in following FIG. 3 TIME-HISTORY RESPONSE OF TOWER
section.
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3. ASYMPTOTIC ANALYSIS

To consider the effect of coupled aerodynamic force, modal analysis
is applied. Using only the first and second modes, tower’s response is
written as

Y(x,t) = (I)l(x)-yt(t) + <I>2(x)-y2(t)
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¢1(x) and ¢2(x) are mode shapes of tower obtained by eigenvalue
analysis. Substituting Y(x,t) 1into the equation of motion with quasi-
steady self-excited aerodynamic force yields the following set of
equaiton of motion.

e 2 . .2 . .2 .3 2. . W2 .3

= + +
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e 2 . -2 .. 2 .3 2. . W2 .3

= + +
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The parameters «1~as and g81-Rs are function of mode shape, wind
velocity and structural properties. The above equaitons are nonlinear
coupled second-order differential equations which «can be changed to
first-order differential equaitons using the following transformations.
v, = al(t)cos¢1 + eyll(al,a2,¢l;¢2)

v, = a2(t)cos¢2 + ey22(al,a2,¢lr¢2)

®1 = wi(t-wi(t) , @2 = wa(t-¥2(t)-¥2(t)), ai,az,¥1 and voare
slowly varying functions of t. Carrying out some algebrical
manupulations with the realtion w1 = w2 yields final equations for

steady state oscillation as

. 22 2

a = O.Salal + O.375wla1a5 + 0.25m2ala2a7 (1 + 0.5 cos 2w2w2)

- 22 2

a, = 0.5Bla2 + 0.375w2a288 + O.25wla1a286 (1 + 0.5 cos 2w2w2)

. 2 2 2 .

wl = —0.125w1((w2/w1) aja, +(w1/w2)a186) sin 2m2w2

Solving these equations, +the stability maps for steady-state

oscillation at different values of w292 are obtained. Stability map at
wa®a = m/2 together with the experiment path is shown in Fig.4. In this

figure, at point 1 zero amplitude of both mode are stable. At point 2,
self-excited vibration of second mode is stable while zero amplitude of
first mode 1is also stable. However, as shown in Fig. 5 (ai1—-a2 phase
plane),when tower 1is excited with first mode, its amplitude will grow
but after sometime it decays while the second mode oscillation becomes

stable. This result agrees with the observed phenomena shown in Fig. 3.
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This analysis qualitiatively explains the observed phenomena.
However, there are some observed phenomenon such as multimodal self-

excited oscillation which can not be explained by this analysis possibly
because of the absence of aerodynamic stiffness terms. The further study
is in progress.
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