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NON-ITERATIVE EFFICIENT NONLINEAR ANALYSIS FOR SPACE STRUCIURES
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1. INTRODUCTION: The common practice at present in analysing the non-linear load—displacement behaviour
of beams and frames is to adopt iterative schemes such as NewtomRaphson technique. However, it is rather

inconvenient to employ such procedures in practice owing to the fact that the the checking of convergence

need be carried out at each incremental step. Intead, the present study is to establish a non—iterative
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solution scheme to obtain the non—1inear
load—displacement behaviour of elastic
' spatial beams and frames with general initial
configurarion, boundary and loading
conditions,
2. TRANSFORMATTONS AND ASSEMBIING:
The incremental stiffness equation for a
straight thinrwalled beam element which is in
equilibrium at an arbitrary reference state,
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presented in Ref.1, is utilized herein to

obtain the load—displacement behaviour of
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Fig.l - Load-Deflection Behaviour of a Cantilever Beam

in which F and d are the incremental load and displacement vectors including warping components, and ‘1‘ is

the tangent stiffness matrix in terms of the stress
resul tants ( P“) present at the reference state. Before
the assembling process, three transformations are needed.
Firstly, the load and displacement vectors are rearranged
separated to those corresponding to the two end nodes in
vector representation., Secondly, all the components are
referred to a single point on the cross—section, for
example, the centroid as in this study. Finally, the load
and displacement vectors are transformed from the element
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local coordinates to global coomdinates.m'

After performing the above transformatioms,
the global stiffness equation is

assembled for the whole

structure and
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solved for the next incremental "

step, utilizing the path length control sl
technique.
3. UPDATING PROCFIURE:

(1) Updating of Coordinates:
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Fig.2 - Deformed Configurations of a Cantilever Beam
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end coordinates are first updated by simply

adding the incremental displacements in
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Fig.3 — Load-Deflection Behaviour of a Fixed Circular Arch
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globalcoordinates to the current coordinates.

Next, the increments in element end rotations in
local coordinates are added to the current values

and thus the new element end directions and the

new local coordinate axes are found. GRIGINAL CONFIGURRTION CONFIGURATION
(2) Updating of Stress Resultants: The increments COMFISURRTION ar @ AT @

in the element end forces are found by re—
substitution of the incremental displacements to
the individual element stiffness equations, and
hence the new element end forces can be found in
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the global coordinates. The element end forces AT (& ar @ ar [
are then transformed to the element local Fig.4 - Deformed Configurations of a Fixed Circmlar Arch

coordinates, and the stress resultants for the new reference state are found,
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(1) Considered first is the post lateral- "' S tont ot Yonrnmn b Saelnind
buckling behaviour of a uniform
cantilever beam with doubly symmetric I- .
section under a vertical load at the free |,
end, The load—displacement relations and v .

the deformed configurations are shown in s | £ 208 x 0" xee
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Figs.l and 2, respectively,
(2) The post lateral-buckling load— "1
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crown is investigated next. The load- : e

displacement relations are shown in Fig.5 - Load-Deflection Behaviour of & Sp-eem;;::m T
Fig3 and the corresponding deformed configurations are also given in Figd,
(3) Considered finally is a space frame with

doubly symmetric I-section, as shown in Figs.

The load-displacement behaviour and the

deformed configurations are shown in FigsS5 — CONF IGURATION CONFIGURATION
and 6, respectively. CONFIGURATION at @ At @

5, CONCLUSIONS: The non—linear load-

displacement behaviour of spatial structures
has been obtained with sufficient accuracy by
the direct solution of incremental stiffmess

equation, This procedure makes unnecessary to CDNF [GURAT 0N CONF1GURATION cuunsunmmu
AT

iterate or to check convergence throughout, At [ ar B

and thus reduces a lot of camputational effort. Fig.6 - Deformed Configurations of a Space Frame
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