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Introduction.- When a continuum body has a tendency in fundamental deformations, we
usually deal with its mechanics, mathematically, within a frame of the displacement patterns.
So far, there are many well-known governing equations obtained through that procedure: various
beam and plate(or shell) theories and others. However, in the past, we find no intention to
disclose a common feature of such formulations----this paper intends to do it within small
displacements.

Kinematic Field.- Let {g' gz E_,aj be a set of curvilinear coordinates in a continuum body,
where small displacements are decomposed into {g“'}-dlrectlons When variables of two sets,
{e,- Q/'L_} and {s" '“sz’j are in a known one-to-one correspondence to{e“j A+E= 3), we
can regard the set {(sﬁ) (So')_} as another Lagrangean coordinates: we put {g~3 {(;ﬂ-) (So')j
without violating any generality. Now, we consider a kinematic field of the body in which the
displacements {U* } are dependent on a finite number of unknown functions {‘1,“---,'¥'~_! of only

97"} in the form:

{ureh}=[ B HH]LDY mEM TP MY e (1)

where [@im_] is matrix of known functions of both {Qa'} and {Sc"} ; and [Du"".J is matrix of
differential operators on {;a'}—field. Let the domains of {,E‘:_} and {gﬂ.} in the body be denoted
by V and L. , respectively, and the domain of {SO‘! at each {ga} be C(Sa-) and called a
cross-section of the kinematic field.

In any case where displacements are represented in a linear form of (1), we can rearrange
it into another linear form such that the column vectors of [§Cm_] are independent as functions
of {3“5 with each fixed $§A3 , and that the row vectors of [D“,:“] are also independent as
differential operators. Thus, we consider Eq.(1l) itself so arranged. With the above prelimi-

naries, we now call the quantities defined by
WM I=[DURSMI{Pn 3™ ()

a set of displacement parameters, which determine i_u.‘:_l of all the material points on each C(SA’,
completely. That is, in kinematic field (1), the displacements on C(Q;") are in a one-to-one

to §Um} . Let the highest order of the differentials in [D¥ym] be J» . It is to be noted that
while {U‘ml can take any values at a cross—sectioﬁ, they can not, in general, over the entire
field la ----indeed, they are restrained derivable through (2) from any differentiable {‘,«ns

Strain Distribution.- To displacements {u.c} , the linear strain components are related as

eij =J‘{3‘h“‘u+5‘ck“-'v+(r“+ .C)uﬁ-j ......................... (3)

A\
where subscript a, after comma denotes the differentiation with respect to §“ ; and 3‘-‘5

and ALy are metric tensor components and Christoffel symbols, respectively. By substituting
(1) and (2) into (3), we obtain

ec‘j=‘;j(+‘jm"'ﬁ.»‘maj+ﬁjmai 3 £ (4)
where }"m( '}JL"’\) 3¢ ﬁém,.\ +34k§m.\. -+ (r *r‘,&t._s ) i
Rem=8:a2% (5.a,b)

and =, ( a :Um= O , since Uy~ are functions of only {gh‘} ). By introducing (2),

Egs.(4) are transformed into the following matrix form:

33=LW ,(r;f“ SHIDERMIPa ™Y (6)

7, €n q . . .
where [q’g._‘)lic matrix of known functions of ',Qa'l and {Sa'j ; andI_D k] is matrix of differ-
ential operatcrs on {Sﬂ'}—fleld Again, we can arrange their elements such that the column
vectors of [1‘7(_‘.3>J and the row vectors of [De J are independent, respectively. And, based on

that, on each cross-section, strain distributions are uniquely determined by the quantities:

EREM I =[DSACSM JIPnlsM 3 (1)



we call the {€ @3 a set of strain parameters in kinematic field (1), and Eq.(7), a generalized
strain-displacement relation. By the same reason to {Um} in (2),{6&3 can take any values at
a point of {gﬂ-} , but they can not, over the {;ﬁ-} -field.

From relations (4), we can see that the differentials in [De-g_] are, at most, once higher
than those in [D“M] . Then, operator matrix [Dea] may be represented as

LDR 1= SEDA R AL B ) (8)

where LUdm] is matrix of differential operators of first order, with the rows being independent.
Mechanical Relations from Virtual-Work Principle.- Let the boundaries of ki inRa be B

We denotes the body forces, per unit region of {g‘-j and decomposed into {g" _}—dlrectlons by

{‘P (gl)J and the surface forces acting on the cross-sections at B , per unit region of {sq”_}

by {?‘(gl)} With O"J being the stress components associated to Q.J

virtual work is written down as
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, the equation of

where B| is the subregion of B subject to mechanlcal conditions. Into Eq.(9) substituting
(1),(2),(6) and (7), we define stress resultants, {M (g&)-} and body- and surface-force resu-

ltants, {Pm(g\)jand{Qm(ga)j as follows:
C MReM 3= LR, T e 3d C
{PmM 3 =, 12™]1E; 3dC, @M= [2™] [igedac oo (10.a-c)

and make the equation of virtual work transformed into

EW=f [IMPTLDR 15 bnd - IPIO 183403 1dLi~fg {@TLO 181 n3dB = 0

By substituting (8) and using an integration by parts on the first term of the integrand in|_| ,
W= ( IDRIIMY 1P D' 151hn} dbs + (LRRIM™S -1q™})5iUmidB=0

m
where[DA'.R] is matrix of differential operators of first order; and lFo'hJ is matrix of
functions of {glj Further, by repeating integrations by parts concerning LD“,',“] , as a
result of mathematical expansions, we finally attain the form:

m —
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where [Du'v‘n] ,L D\r%] , [.Dv m] and [Du.m] are matrices of differential operators, with the
highest orders of fhe differentials being r',]’—" ,r-’l and less thanT=1 , respectively; and

{(b‘)’a);j are a set of all the lower derivatives of {‘Y;nj independent to {U’mj . si‘pnj and
6{‘}-"‘3 are arbitrary in |, and B| , respectively. Since the displacements of a cross-section
are entirely determined by parameters {ij (the geometrical boundary conditions take the form:
Vm=Vm on B-By ), the derivatives{(ax);j are free on any part of B . Thus, we obtain

Equilibrium Equations: [D._.,';,]([Dag ]{Mﬁ‘}‘{ﬁmj ) ={° } in L ... (12)
Mechanical Boundary Conditions: -

[ DeRIIMBI-IDIMIIP™I-IR™)=0) on By ....oeveeiitn. (13)
(and if exist such derivatives ('D‘y:)., )

[DUH J(EDRIIMRY-{Bm)=10 ) onentire B ...........0. (18)

Constitutive Relations.- Provided that the original constitutive equations take the form:
o'ija'Efd-a‘Q Cre (Eija-!; elastic moduli), by the use of (6), those are generalized to

IMR Y = LORRSAYJTC A o (15)
[ CReeM)] =-Sc [‘lb‘(:%, TIES™ B 2., 1dC (16)
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