Hokkai-Gakuen Univ., Member, Shouji Toma
Purdue Univ.,
Wai F. Chen

The general behavior of a fix-ended column under one cycle of reversed loading can be divided into nine stages: (1) initial elastic loading in compression, (2) one hinge formed in compression, (3) both hinges formed in compression, (4) elastic unloading in compression, (5) elastic loading in tension, (6) one hinge formed in tension, (7) both hinges formed in tension, (8) yielding in tension, and (9) elastic unloading in tension. Figure 1 shows schematically the nine stages of the load-deformation behavior, and the corresponding deformation patterns are shown in Tables 1 and 2. This "hinge-by-hinge" approach accommodates inelastic beam-column problem under cyclic loading to a series of elastic analyses.

The curvature at a cross section is related to bending moment by the relation

$$\frac{d^2y}{dx^2} = -\frac{M}{EI} \tag{1}$$

Solving this equation for a column in compression and tension, the deflections can be expressed in the general forms given in Tables 1 and 2. The integration constants are to be determined by using appropriate boundary conditions and the results are given in the tables.

In tracing the behavior at each stage of loading, the slopes or relative rotations at the ends and at the center will be found by taking derivative of the deflections.

$$\Theta_{E} = \left(\frac{dy_{1}}{dx}\right)_{x=0} \tag{2}$$

$$\theta_{c} = \left(\frac{dy_{2}}{dx}\right)_{x \approx L/2} \tag{3}$$

It should be noted that these slopes or rotations will change when the column behaves elastically. They are used as the boundary conditions in the subsequent stage.

A typical result of the calculation is shown in Fig. 2. It can be seen from the figure

Fig. 1. Stages of Fix-Ended Column Behavior under 1-Cycle of

Fig. 2. Cyclic Behavior of Fix-Ended Column, KL/r = 120.

that the post-buckling and plastic tension branches are fixed, while the elastic unloadingtension branch connects these two fixed envelopes. The sooner the axial load is reversed, the closer the slope of the curve is to the elastic slope. The basic concept of the present procedure can be easily extended to the case of more cycles of axial loading, or other type of supporting conditions.

REFERENCE:
Timoshenko, S.
P., and Gere,
J. M., "Theory
of Elastic Stability,"
Mcgraw-Hill,
New York, 1961.

Table 1. Deflections o	of Each Loading Sta	ge in Comp	ressio	n				
$y_1 = A \sin kx + B \cos kx - \frac{Q}{2p} x + \frac{M_E}{p} \text{for } x \le a, y_2 = C \sin kx + D \cos kx - \frac{Qa}{2p} + \frac{M_E}{p} \text{for } x \ge a$								
Stages	ME	A	В	С	D			
P a q/2	$\frac{\Omega}{2k} \left(\cos ka \cot \frac{kL}{2} + \sin ka - \cot \frac{kL}{2} \right)$	Q 2kP	M _E - − p	<u>∩</u>	Q sin ka - ME			
(2) A One Hinge at Ends P. Q/2 Mc	^M pc	C + <u>Q</u> cos ka	- ^M pc P	$(\frac{Q}{2kp} \sin ka - \frac{M_{pc}}{p})$ $\tan \frac{kL}{2}$	$\frac{Q}{2kP} \sin ka - \frac{M_{pc}}{P}$			
(2) B. One Hinge at Center M_E $Q/2$ $Q/2$ $Q/2$ $Q/2$	- М _{рс} + <mark>Qa</mark> + ру _с	<u>Q</u> 2kP	-ME	$\frac{Q}{2kP} (1 - \cos ka)$	n 2kP sin ka - p			
77	$y_c = -\frac{N_{pc}}{P}$ $(\frac{1}{\cos \frac{kL}{2}} - 1) + \frac{Q}{2kP}$ $(\tan \frac{kL}{2} - \cos ka \tan \frac{kL}{2} + \sin ka - ka)$							
(3) Both Hinges P Q/2 Q/2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ Mpc (1 sin kl	+ cot ki.		A - Q cos ka	Q sin ka - P ZkP sin ka - P			
(4) Unloading E Q/2 P Q/2 Q/2 Q/2 P Q/2	$\frac{P}{k \sin \frac{kL}{2}} \left(\frac{Q}{2P} \right) \left(\sin ka \right)$ $\sin \frac{kL}{2} + \cos ka \cos \frac{kL}{2}$	•			Q sin ka ME p			

Table 2. Deflections of Each Loading Stage in Tension								
$y_1^{-} = E^{kx} + Fe^{-kx} + \frac{0}{2P} \times - \frac{M_E}{P}$ for x < a , $y_2^{-} = G^{-ka} + He^{-ka} + \frac{Q_a}{2P} - \frac{M_E}{P}$ for x > a								
Stages	М _Е	E	F	G	н			
(5) Elastic Tension $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} M_{E} & \\ \hline & 1 & kL \\ \hline & \frac{kL}{e^{2}} - e^{\frac{kL}{2}} & \frac{kL}{k} \theta_{c} + \frac{0}{2k} \left[(1 - e^{ka}) e^{\frac{kL}{2}} + (1 - e^{-ka}) e^{\frac{kL}{2}} \right] \\ - \frac{kL}{k} \theta_{E} \left(e^{\frac{kL}{2}} + e^{\frac{kL}{2}} \right) \end{array}$	$ \frac{M_E}{2P} - \frac{Q}{4kP} + \frac{\theta_E}{2k} $	$\frac{\frac{M_E}{2P} + \frac{Q}{4kP}}{\frac{\theta}{2k}}$	E + Q e ^{-ka}	F - <u>Q</u> e ^{ka}			
(6)A. One Hinge at Ends	$\begin{bmatrix} -M_{pc} & \frac{1}{kL} & \frac{kL}{kL} & \frac{kC}{k} - \frac{M_{pc}}{P} & \frac{kC}{kL} & k$	2 - Q 4kp	- E - <u>pc</u>	E + Q e ^{-ka}	F - () e ^{ka}			
(6)B. One Hinge at Center NE OF JOY2 Phase Queen the Content of the Center of the Ce		$\frac{M_E}{2P} - \frac{Q}{4kP} + \frac{\theta_E}{2k}$	$\frac{M_E}{2P} + \frac{Q}{4kP}$ $-\frac{\theta_E}{2k}$	E + Q e ^{-ka}	F - Q e ^{ki}			
(7) Both Hinges PC PC PC PC PC PC PC PC PC P	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L) kL ²)]		$E + \frac{Q}{4kP} e^{-ka}$				