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The main objective of this study is to develope a discrete formulation and a
solution method for cptimum elastic desizn of framed structures under multiple constr-
aints including member buckling constraints.
1. Basic concept of discrete optimum design.
The objective function and constraints for the binary programming formulation are
obtzined by using a Taylor series expansion to linearize the equations as follows.
For the (r+l) th design :
minimize w @)T

subject to G @r) = X + 37X @)
where X ¢+ design variables
F @) : a gradient vector of F (X)
a @) : design constraint vector
Jx : the Jacobian matrix of G

If there are P available sections for each member, the binary programming formulation

for the (r+l) th design is :

subject to G (ir) - JxXE o+ Jx/'zj >4 (2)
where X =724 , Ud
Zik = Capacity of section j for member i

_—

e : Unity vector of multiple choice constraints

€, dij = 0 or 1 (binary variable)

U s« Quasi diagonal matrix having [1, 1, s s e s e Jlxp
2. Pormulation of discrete structural design

(1) Objective function.
The cost objective function F (d ) is

o)

F(d) =£1 Lif’Tl Cix ad = 1T ¢ @ (3
i= =
where L : length vector , C : Unit cost matrix of availsble sections

(2) Design Constraints
a., sStress constraints
The stress constraints are derived from the AISC inequaity stress
(axial + bending) formula and the member buckling theory.
- — —_ .
¢ X =TI -r&a WxKa) P = ¢ (4)
Y, . . T 7~ St ol Ee T
where Y"’[ T~ ) Yl:[l:lj s 7= ‘\/,,/—’= oS T
P’ : a vector of applied joint load in global co%rdinates “

4 : Dbranch - node incidence matrix , ol;: sign coefficient

T : translation matrix , K : scaled stiffness matrix
. . + Ly <
Ei ¢ extractor matrix s Si= —§T s constant matrix

X

Pyps allowable axial force of a member
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be Deflection constraints
[ —_ |
@ ® = - @xKap2g o° @ =0+ WTxKA) T z4 (B
Ué, U ¢ a vector of lower and upper limits of joint displacement.

3. Successive binary pogramming

minimize 1T ¢ d, subject to G (XT) Jer Jyr
6% (3 )| |08 el o% (BT 24 (6)
(‘b r - a _ Ar
—_— —t 'D'ab'—"é) g (X ) __xr T ‘L(__ -] t
where Jo = Y-T ¢ , Q= /7 (1-¥F¥Xa@XEA T &
or =Fa T xXTa)Vp , 9 = WIFRA)LATT, 3= &

L. Implementation and example problems

The program developed in previous sections, which consists of a main program and
four subroutines, solves the discrete optimum design problem for rigic Iramed systems,
that is, planar frames, grids, and space lrames.

A one-story, two-bay rrame is solved using the program and the results obtained

for various problem canditions are didissed in detail.
Available Section for One-Story, Two-Bay Frames

A0kips 40%ips
ZOK lK’—-i [ 1BW — T Section Iz in* A in* Section Iz int A in*
q z £ » 14W22 198 6.49 16W26 300 7.67
”Ln _L 14W26 244 7.67 16W31 374 9.13
. 14W30 290 8.83 16W36 447 10.6
; o -+ 90’ ———] 14W34 340 10.0 16W40 517 11.8
14W38 386 1.2 16W45 584 13.3
One-story, twobay frame 14W43 429 12.6 16W50 657 14.7
14w4g 485 14.1 16W58 748 17.1
14W53 542 15.6 16W64 836 18.8
“ so 14W6l1 641 17.9 16W71 941 20.9
14We8 724 20.0 16W78 1050 23.0
] 14W74 797 21.8 16W88 1220 25.9
000
2™ = 14W78 851 22.9 16W96 1360 2.2
£ o i e e Results with Bandwidth and Section Table length
o
Length 8 12
3000
Band width 3 5 7 3 5 7
t 5 4 —i 3 Ietratien 1 3 3 1 3 3
Meranon Number Binary Cycle 28 137 339 28 119 253
. . . . t Weight 5
Results with Starting Point Varied Optimum Weight(lb)| 4530 4950 4950 4530 4950 4950

In most cases the process converged rspidly to a feasible design, although the
results obtained from various starting points shaw significant diversity. The results
indicate that selection of a good stariing point will reduce greatly the binary progr-
amming time and the total computing time required. If convergence is achieved, it
requires few iterations (5 at most for this example).

The use of smell bandwidths greatly reduces the binary programming time and the
total time. Variation of table length does not affect the time significantly provided

that the bandwith about a starting point does not range outsice the table.

Le Conclusions

From the results of design axamples using this program, it has been concluded that
in the discrete optimum design of steel framed structures the buckling constraints
should be included and could be easily incorporated into the general frame work of the
formulation, and yet it has the same level of efficiency as the previous research on

discrete optimization which is formulated without considering instability,
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