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STUDIES ON PHOTO-ELASTICITY

By Juichiro Kuno, Dr. Eng., Member.
Synopsis,

1. The law of photo-elastic extinetion Sd=Kn iz established, the constant X being referred
to ad the cogfficient of photo-elastic cxtinction CIeRERERYJ6 (% T,

2, The photo-glastic phenomenon in phenolite may be interpreted ag a result nuused, by
stratn and nol by stress.

8. Btress in a roller diometrically compressed is mathematically determined by :r.pplymg the
theory of complex functions.

4. .t reclangular plate compressed on fwo sides is considered by means of Airy's stress-
fonetion.

5. In each of these two problems, a specimen of phenolite iy tested by the photo-elastic
apparatus to compare the ealculation with the experiment with attention to the time gffect.
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INTRODUCTION,

In problems of elasticity there are many cases, in which stress distribution can
be hardly found by mathematical analysis. As a useful weapon to attack such o
difficult problem, chiefly of two-dimension, the photo-elagtic method has been studied
and applied since the beginning of this century by E. G. Corer®™, L. N.G. Firox, A.
MrswagER, W. Birveavn, Z. Tuzr, 1. Araxawa, T. Fuxurara™, K. Orxupa® and others.

As for the fundamental nature of photo-elastic phenomenon, there has been
still » question whether stress or strain is the immediate cause of the temporary
double refraction. This subject was first investigated by Frooxw and Jessor®™ with
specimens of glass and celluloid. One of the facts they found in celluloid is that
the optical phenomenon due to stress undergoes considerable time effect. This result

(1) Corgr and FiLon's “A Treatise on Photo-clusticity” gives a list of papers writen in European
languages dated up to 1931,

(2) Jour. Soe. Mech. Eng, (in Japanese), xxx, p. 336 (1927) and xxx1. p. 169 (1928).

(8) Ditfo, xxx1, p. 850 (1928} and XXXIT, p. 271 (1929).

4) Phil. Trans. A, coxxo, p. 89 (1923).
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leads to another quesfion how the climination of the time effect can be done in
practical observation. To. photograph isoehromatic lines with monochromatic light
may appear to answer the question, still this is insuflicient if we do not care about
the fact that the dark band photographed at the instant of loading differs remark-
ably in position from the same band tuken at another instant, even though the load
remains constant. Phenolite is unow extensively used in this country as a new
material for photo-clastic experiments, while the guantitative measurement of the
time effcet in this material scems to have remained untouched.

In Chapter 1 the optical effect due to the simple stress is measured by means
of the BapINEr's compensator with specimens of phenolite supplied by ihe Tnstitutc
of Physical and Chemical Rescarch, Tokyo. The main object is to comsider further
the known relation between stress and optieal eflect and then to investigatc the
variation of the optical effect with time. Exporiments described in Chapler 2 are
made also with plenolite to measure the effect of time upon strain. The relation
between strain and optical effect is examined in order fo seitle the quostlon whether
the optical effect is caused by the strain. These two chapters constitute Part I, viz,
the photo-elastic behaviour of phenolite.

The two subsequent chapters in Part 1I are devoted to the theoretical investiga-
tion of the stress distribution in some two-dimensional problems to construct
isochromatic lines, which are to be compared with experiments. In Chapter 3 stress
in a roller diametrieally compressed is mathematically determined by applying a
method of caleulation proposed by Prof. 8. Yorora. In Chapter 4 a rectangular
plate compressed on two opposite sides is congidered by means of Airy's stress-
function. In cach of these problems, a specimen of phenolite iz tested under polazr-
ized light to compare the calculation with the experiment with attention to the

time effect.
PART 1.
PHOTO-ELASTIC BEHAVIOUR GF PHENOLITE.

Chapter 1. Estinction of Light in Phenolite under Stress.

1. Optical effect due to stress.

Since the time of Sir Davip BrewsrEr, experiments have been made that show,
if an incident ray falls perpendicularly upon the plane of a transparent elastic plate
strained two-dimensionally by a system of loads, the light is broken up into two

components polarized in the directions of principal stresses. 1f the plate is placed
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between crossed nicols, it is found that the light pasging through a point, at which-
the directions of principal stresses are in the directions of prinecipal planes of the
nicols, is extinguished. This darkness depending on the directions of principal siresses
we shall speak of as the photo-elastic eaxtinction of the first kind. The locus of the
point of simultaneous extinction generally forms a curve called an isoclinie line.

Each of the component rays broken up in the specimen, changes its velocity
of transmission according to the magnitude of the stress (or strain) which exists in
the vibration direction of that ray. Hence a cerfain amount of phase difference is
produced between the two after passfng through the specimen. If a specimen is
placed in the beam of circularly polarized monochromatic light between the nicols .
crossed, the intensity of light I passing througli the analyzer may be represented by
an equation of the form, as is well-kuown,

g e . 1
JI=d*gin* = §
-

where 4 is a constant depending on the nature of the light used and & the phase
difference between the two components. Now consider a point giving such a phase
difference as 3=2nw where n is an integer; then we have I=0 at the poinf, that
is, the light is extinguished and the field becomes dark. This darkness, depending
on. the magnitude of the stress (or strain), we shall speak of as the photo-clastic
extinction of the second Lind, which occurs periodieally as 8 inereases. Thus a

represents the order of catinction.

2. Relation between stress and optical effect.

According to the wusual practice we take stress for the present as o basis of
optical effect. Then the relation between stress and aoptical effect may be generally
represented by either of the equations

r=08d \
Smancsan | T

~where r: the relative retardation corresponding to § (phase difference at a point),
S: the principal stress difference,
d: the thickness of the specimen, '
C': the photo-elastic (stress-optical) constant,
A : the wave length of the light used.

In technical units, ¢ may be expressed as cm’kg™, as will be seen from (1).
It will be more familiar to engineers to use another comstant K defined by the
equation

E=2n8d8 . ...oovinn ... e (2)
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the units of K being kgfem as shown below. Then at the point where &=2nw,

we have

Thus at the point of the photo-elastic extinction of the second kind, the prin-
cipal stress difference multiplied by the thickness of the specimen is proportional o
the order of ecxtinction. This relation we chall refer to as the Law of Photo-clastic
Extinetion, and the constant K as the Coeficient of Photo-elastic Extinclion. In a
specimen of uniform thickness, the law may be espressed in another form, namely,

S=kn o e e e e aee e (4)
where k=K|d. Hence the principal siress difference is directly proportional fo the
“order of extinction. If S is expressed in kgfem® and d in cm, then K is measured
in kgjem and % in kgfom®

From the equations (1) and (2) we geb the relation KC=x. By L. N. G. Firow
the constant ¢ is expressed in a unit called o brewster™, which is defined as an
dngstrém per millimetre per bar and is equal to [107" em® per dyne] or [980 cm®*f
(10" kg)]. Hence we have the relation )

(K in kglem)x(C in brewsters)=(AC) —‘]3% %%E—
=98 (A C) cngsirims
This must be equal to A. It X is expressed in Gngstroms, we have
(K in kgfem)x(C in brewsters)=(\ in angstréms)/9.8

The next step is to consider how to determine the value of the coefficient K.
Let a Bariner’s compensator be inserted between crossed nicols in such a position
that the principal planes of vibration of the former are inclined at 45° to the prin-
cipal planes of the latter. The distance through which & wedge is moved in order
to replace a dark band with an adjoining one we shall denote by a. In the com-
pensator employed by the author, the distance ¢ was found equal to 3.82 mm for
the green light (A=5461 dngstréms) of the mercury vapour lamp. The phase differ-
ence increased by the compensator displacement ¢ is equal to 2.

Next, if a tension or compression specimen of umniform section is inserted
between the compensator and the polarizer arranged as before with the directions
of principal stresses placed parallel to the principal planes of the compensator, we
find the central band shifted to another position. A wedge is now to be moved by
the micrometer screw until the central band comes again to the initial position. If

this distance, the band displacement, is denoted by 2, we have
§=20mxfa '

where § is the phase difference corresponding to the displaceincnt z. Then we

(1) Phil. Trans. A, cosxr, p. 106 (1928).
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obtain from this and the equation (2) R

: P=xKbla ...ccooiii..L. e et ane e (€3]
as §= P[bd in a tension or compression specimen, b being the width of the specimen
and P the axial load applied to the specimen.

If the photo-elastic behaviour of the specimen arranged as above is studied by
increasing the load, measuring the corresponding band displacement, and plotting a
curve with the loads as ordinates and the band displacements as abscissas, we get o
load-band displacement curve. Since the tangent of the slope of « load-band displace-
ment curve indicates the values of Kbla in (5), the cocfficient K is equal to the
tangent value multiplied by a constant afb.

3. Determination of the coefficient of photc-elastic extinction : Time effect.

Eleven tension specimens as shown in Fige 4 __,__ . e
were first prepared in order to determine the ' 4
. - . ‘ I
coefficient K for phenolite. The day before each res - ton L
testing, the specimen was annealed by heating it Mo ¢ b d Mo £ & d
. . PR ¥ B U A & 1.1 T35 0 4o
at 65°C. for about an hour in a thermostat and 20- sse 7M. 3 - sour S0
3 . 422 930 q = #0013 430
1 1 P 3 4 AT qL0 Qo 003 525
allowing it to gool off very slowly, the object being s im0 < o s
the removal of initial stress. A cement-briquette B v 4443 W0 (A chnersions wmm }
Fig. 1.

testing machine of MicHaELI® type was used as the
stra,mmg apparatus. The grips of the machine were modified to fit into the holes
drilled at the two ends of the specimens to enable the pull to be applied. For
Light, the green line (A=5461 angstréms) of the mereury vapour lamp was used
throughout the experiments. Fig. 2 shows the general view of the apparatus, and
Fig: 38 the tension deviee in which the transparent specimen is photographed black,
owing to.the fact that phenolite, yellowish orange in colour, absorbs the light

-
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sensitive to the qrdinary photographic plate.

Tt was attempted first to oblain the load-band displacemer
the load by AP kg at intervals of At minutes, an

Wt curves by inereasing

4 measuring the band displace-

ment at the instant 1 minute after each increase of load. Five series of tests were

carvied out by changing the load and time increments.

The load-band displacement curves proved linear,

as follows :—

AP kg 30
At, min. 2
X, kgjem 109

These results indjcate that the method o

constant value of K.
In the second attempt it was per

three operations of loadin

value of load. Such an observation was repeated at intervals of mo
with the same specimen in order to avoid the effect of res
ways within the limits of 10 and 80kg. The load-

was varied stepwise in several

band displacement curves of gleven specimens were foun

~of the load applied. In this case the

history of loading. The values of K determined by
varied from 1075 to 11.44kglem in the eleven specimens.

11.0 kg/em.
For the purpose of Vcompression %

by the method of least squares varied from 10.86 to 1153 kg

g, reading the compensator, and unloading fo

the value of K being found

15 5 5 5
2 2 5 10
103 99 9.6 89

t testing used above fails to give a

formed within five seconds to carry out the
r a definite
re than 5 minutes
idual strain. The load
d linear within the limits
coefficient seemed to be little affected by the
the method of least squares

The mean value was

ests, a steel frame was inserted between the

grips of the testing machine to convert ib

into a compression tester, the device being

chown in Figs & In order to examine the
very material used in the previous tests,
nine gpecimens, 72mm in length, were pre-
pared by cutting off both ends of the tension
specimens. Rach specimen was tested by
the instantaneous method as was applied in
the tension tests. The load limits were 30
and 100kg. The value of K determined

Jem in the nine speci-

mens, giving the mean value of 11.0 kg/em.

The value of the coefficient of

instantaneous method as was applied 1

photo-elastic extinction determined by the

0 the above tests we shall vefer to as the pri-
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mitive value of K, and denote it by K.
The equation (5) can be transformed into
Bod=xK
in which the left- and right-hand members must be respectively constant so long

.

ag the stress remains constant, while # may undergo a change in consequence of
the optical creep. Hence K may be a function of time fo neutralize the variation
of z. The stress-optical condition at the instant of loading will be now denoted by
Sud=1,Ks .
and the condition.at ¢ minutes after loading by
Sud=(x,+X)K:
where X =2—z,. Eliminating @, from those two relations, we have
e A G o o 3 e (6)

where ¥=X/ad, representing the optical creep per unit thickness expressed in
multiple of the unit defined by the distance a. ' C

In order to determine the value of ¥, eleven tension specimens of phenolite
were examined under various stresses (10~230 kgjem®). Each test was performed
by keeping the load constant and observing the band displacement X at intervals
of 1 minute for the first 20 minutes and then at intervals of 10 minutes for the
following 100 minutes. It took a few months to carry out the above experiments,
so the room temperature varied from 14° to 21°C. On caleulating ¥ and plotting

it to time on the logarithmie Table of ¥/Sin 10-4 cm per ks.
paper, we find that the creep- ‘ Ve  observed Mean
time relation can be represent- | © under the siress in_*9/ et yis | v \irr.
ed by equations of the form min. |20|40 |60 80 420 §1Z0\/30 5050 200\220| g | car. j
Y=ptr 7 |35|33(30|32| 3/ 32|34 |257(32 |24|3/F 32 | 33| @
The results of more than 2 |98\ 40\00\ A2 43107 | 92| 93\ 5192 | @5 | @3 ) O
sixty tests showed that the ratio i j; :_i g jg jg Zg Zz z jg g :_: Z:: jf) f
of Y8 for a definite value of t |5\ 0l 7| 7ol (2212 | 761 76 | 78| 72| 76 | %2 | o
is nearly a constant, as can be 15 \astazl as|oolas (sitarlss|s7iawlas| s¢ | 55t 2
scen from the following table | 2 |9s|93|93|9s|as| 99|92l osivs|os| 95| 96| 7
in which eleven series of the 30 |05\ 103\ 104|019 05 | 703|108 g5 | w2 | ire | 107 | 106 | 107.| 1
results are given ag typical cases. 50 |i25125\125\100 | 125 128|125 V1281 29| 125| i38) 220| 130 4
Thus we take P to be propor- GO W25/ 5\/00 | /50190 |rid| 56} 150|192 /82| 150) 197} 28] 7
tional to &, and we have 720 |5 VES\[FR1 /6T 182 (161 |77/ V167 160 | /85| /88| 159} /80 7 7
=iy SO® (<15 min) .
............................ {

L cm : :
Y= 550 St (15 min. < <120 min.}
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The accuracy of these equations may be judged from the table, which gives
¢ also the caleulated values of Y|S and the difference between the observation and
the calculation. '
If we insert (7) into (6), we have
N L NS (8
where s represents the nuwmerical coefficients and » the indices in the expression
(7). Taking K, at 11.0 kgfem, we have the values of K, from the equation (8) as.
follows :— '
ATy =106 K, =105 Ay, =103
K13=10.0 Ey= 98 Ew= 94
Accordingly it is obvious that the isochromatic lines observed iu the experiment

vary with time by the optical creep.

4. Comparison of phenolite with glass, celluloid and bakelite. .

(1) Just in the samme way as for phenolite, the values of K, for some other
materials were obtained as follows

Materials (Glass Celluleid Bakelite Phenolite
A, kgfem . 2344 48.8 127 11.0
C, brewsters 2.4 114 43.9 50.6

Three specimens made of so-called Belgian polished glass were tested. Celluloid
specimens, twelve in all, were cut from the sheets manufactured by the Dainippon
Celluloid Co., Japan, the Du Pont Viscoloid Co., U. 8. A., and the British Xylonite
Co., London. Three bakelite specimens were prepared out of the pure bakelite of ¢
state supplied by #he Sankyo Co., Tokyo. _

The above table shows that the value of L, of celluloid is nearly five times as
large as that of phenolite. This is in agreement with Tuzi’s result obtained by
different method.”” Among these substances, glass gives the largest value of K, In
this respect it is not suitable for the photo-elastic experiment.

(2) Phenolite has considerable initial stress in it. But it can be removed by
one hour’s annealing at 65°C. On the other hand, initial stress in bakelite is so
marked and stubborn that it can not be easily removed ag in phenolite.  In this
point bakelite compares wufavourably with phenolite.

(3) The value of stress corresponding to the end of linearity in the load-band
displacement curve we shall speak of as the optically proportional limit, and denote
it by 8. A number of tests for phenolite showed that it was equal to about 280

kg/em® for tension and 300 kgfem® for compression. The law of photo-elastic ex-

(1) Sei. Fup. I P C E., v, p. 79 (1927).
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tinction Lolds true only below S, -Hence there is'a certain limit in the ovder of
extinction for a.given value of the thlckness d 'Denotihg“it' by i, we have the °
relation = - ' R L T

iy =Sed/ A,

The mean value of S, for celluloid was found to be abott 190 kgfem® with the
specimeéns described in (1), while that given by Cormr and Cmaxxo™ is about 250
kgfem®. Taking the latter value for the comparison with phenolite, we get the follow-
ing values of n, the value of S, for phenohte bemcr' taLen at 280 Lcr/cm

4 in cm B ¥ ) s 06 ’ ‘ 0.4
n, for phenolite 254 - ¢ 188 . . 102
1y for celluloid C 51 ' 31 . 2.1

Thus the value of n, for celluloid is one-fifth of that for' phenohte In this
point celluloid compares unfavourably with phenolite. ’
(4) The average values of some physical constants .obtained from several speci-
meng are as follows :— :
Materials ) ) Phenolite - Bakelite - ' Cellnloid .

Coef. of linear expansion C., 10-° 7 9 11
Ultirnate tensile strength, kefem? 430 250 480
Ultimate compressive strength, kgfem? 1600 1100 1200
Yield point {compression}, kg/cm? 1600 1000 . . 540
Young’s modulus, kgfem?!  10¢ 36 37 27 )

The coefficient of linear’ expansion was determined for the temperature ra,nge
5~80°C with the LemExy and WERNER'S apparatus supphed by Goerz Werk. The
Youna’s modulus varies according to the mode of testing.” The values given in the
table are the results obtained by loading the specimén in a moderate rate without
interruption. By loading and unloading very quickly as in the 'mei:,h'od'applied‘ tor

the determination of the coefficient X, the value for phenohte 'wag found to be
4.3 X 10" kgfem®, :

5. Procedure of the photo-elastic observation.

In the engineering application of photo-elasticity the optica.l‘éﬂ’ect is remarkably
affected by the time elapsed after loading. Iu the absence of care, this may give
rise to an’ error in interpreting the isochromatic lines. To avoid this source of error
the following procedure is recommended. ' ‘ -

(1) Isochromatic lines. The specimen placed in the "beam of éircularly

polarized monochromatic light should be photographed at an instant ¢ minutes after

(1) Phil. Trans. A, coxxr, p. 159 (1921).
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loading. ToYmake the order of extinction be correctly judged, photographs should
be taken, if necessary, at various stages of loading.

(2) Sign of the principal stress difference. This may be discriminated with ease
if a fewjpoints on the specimen are examined with a comparison test piece, of which
the material and the thickness need not be the same as those of the specimen.

(8) Isoclinic lines: They should be then recorded successively. If there is
the creep in this case too, each line should be photographed at the instant ¢ minutes
after loading in order to avoid the effect of residual strain.

(%) Coefficient K,. The value of the coefficient K; should be determined for
the same material as that of the specimen, and then ]c;zKﬁ/d be caleulated. The
value of the principal stress difference for the dark bands photographed should be
estimated by the relation S=nk. ‘
’ (5) Principal stresses. The principal stress should be determined by the
method of graphical integration®. The method of measuring the sum of the prin-
cipal stresses at several points of a specimen seems to be incorrect, as it may give
rise to an error due fo the creep of strain.

Chapter 2. Relation between Strain and Optical Effect.

6. Further study of timeveﬂ’ect.

As explained in Chapter 1 the stress-optical effect at the instant { minutes after
Ioémding may be denoted by the expression
Sad={x,+I)E
In order to compare the strain with the optical effect, the total optical effect
(xo-+X) is now considered, as the strain is measured without separating it into the
initial value and the creep. By doing so we obtain a general view of the optical
effect varying with the time, though the accuracy iz not so good as in the preced-
ing chapter. Now we put
y=8K=(xy+X)ad
Then the quantity y represents the total optical effect per unit thickness at any
instant in a similar way to ¥ in the equation (8) of Chapter 1.

Tan
From the data obtained in the experiments cxplained in Chapter 1, the values

of y were calculated, and they were plotted to time on the logarithmic paper. The
curve drawn through the points belonging to a definite value of the stress § was

found linear. Accordingly it may be represented by the equation of the form

{1) British Association Repor!, 1914, p. 201 and 1923, p. 850,
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y=B8r
The coefficient 8 and the index s for (<16 minutes were found as follows:—
£=0.0939+0.00005

7=0,0271+0.0002

Hence we have
. y=00939. 0ozt

This relation holds good for any value of ¢ between {=1 minute and (=16

minutes.

7. Strain measurement.

The tension apparatus and the tension specimens that were employed in the
optical measurements were again used for observing the strain. The elongations on
the gauge length of 20 mm were measured by HuGeENBERGER’s tensometer, of which
one division of the¢ scale corresponds to 1/1200mm. A number of tests were carried
out under various loads. Each set of observations was performed by keeping the
load constant and taking the reading of the tensometer at intervals of 1 minute for
the first 18 minutes. The room temperature during the period of these tests varied
from 13° to 18°C. Since the size of the phenolite plates supplied was comparatively
small, the tension specimens with relatively long gauge length could not be prepared.
This restriction of the gauge length limited the measurement to the first 16 minutes,
as the creep for the following 20~120 minutes was relatively small and it seemed
very difficult to measure it with precision.

The tensometer readings for each set of observations were plotted to time on
the logarithmic paper. It was then found that the strain-time relation can be

represented by the equation of the form

e 8z
where ¢ is the strain, § the stress in kgfem® and ¢ in minutes. The coefficient 8’
and the index z were found as follows :—

£ =(0.233840.0002)x 10—4

2= 0,0288-£0.0002

Hence we get for phenolite
£=0.2338x10-4 §0.038

8. Strain and optical effect.

In the above two articles it was found that the optical effect and also the strain.

undergo the time effect; namely,
y=0.0039 § o0

£=0.2388 % 10— §{0.038
The rate of change of y with the time differs slightly’ from that of e. The
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difference of the two indices is
' 0.0288—0.0271=0.0017

The values of *, ("™ and ¢ are plotted in
Fig. 3. If we elimninate the stress & from the above
two equations, we get

y=Hh'e

Fig. 5. where

0.0939

Kr= m x 104 ¢~00017 =4 (20 { —0-6017

The coefficient K’ calculated for some values of ¢ are shown in the next table,
in which the value of "7 are also given.

t 1 2 5 10 15
K 4020 4015 4 009 4004 4002
o007 1.0600 1.0012 1.0027, 1.0089 1.0046

Now it is apparent that if we neglect some errors less than 0.5 9%, the coeffi-
cient K’ may be considered approximately as a constant. We arve thus driven to
the conclusion that the strain may be the immediate factor in producing the photo-
elastic phenomenon, so far as the above experiments are concerned.

9. Digcussion of the result.

(a) Lateral strain.

There is still & question whether the lateral strain takes part in producing the
double refraction. In order to investigaie this problem, a number of tension tests
were made to measure the lateral strain under various loads. The apparatus
described above was again used. Two specimens of phenolite were prepared for the
present purpose. The shape of the specimens was nearly the same as those used
before, except that the width was 25 mm at the centre and 50 mm at the ends. Each
set of observations was carried out by keeping the load constant, and reading the
lateral contraction at intervals of 1 minute for the first 16 minutes. The room
temperature during this period varied from 18° to 18°C.

Plotting the observed values of the lateral contraction to time on the logarithmic
paper, it was found that the strain-time relation can be represented by the eguation

of the form '
e'=gn8pe

where g’ is the lateral strain. It was found that the coefficient 87 and the index w

are as follows ;

A" =(0.0883:0.00008) x 104
w = 0.0287+0.0002
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Hence the lateral strain & is given by
&' =0.0833 x 104 § g0zt
As the longitudinal strain is given by the equation
. £=0.2338x10-4 S0
the value of Polsson’s ratio of phenolite is
1/m=¢'fe =0.356 t~0-0001
The index of ¢ in this expression being smaller than the corresponding probable
error in magnitude, it may be said that Porsson’s ratio of phenolite undergoes little

time effect. We have therefore
1/m=0358 or m=2.81

Hence the lateral strain ¢’ can be represented by means of the velation
g'=—c/m
Take for the present the greatest shearing strain v as the immediate cause of
the optical effect instead of the linear strain taken in the previous article. Then
int_roducing a constant K", we may put
y=XK"v
From the mathematical theory of elasticity it is known that the principal strain
difference (e—e¢’) at a point is equal in magnitude to the greatest shearing strain at

the point. Hence wc have
y=K"{g~g")
This gives
_m+l
- i

L'e.

Y

As i is practically independent of the time effect, the coefficient K varies with
time in a similar way to K’ in the equation
y=k'g )
Thus the consideration of the lateral strain adds nothing new to the inter-

pretation of creep in the cazse of phenolite.

{b) Other materials than phenolite, -

As to the relation between strain and optical effect, a number of experiments
have been made by various authors with specimens of glass, celluloid and bakelite.
Ag for glass, Firox and Jessor™ tested a number of rectangular blocks of glass with
the result that there was neither optical creep during the time the load was left
on, nor any frace of residual double refraction on removal of the load. In their
tests the blocks were left under the compressive stress of 149~ 220 kgjem® for 17~
67 hours. '

8. R. Savur® showed with specimens of glass that the dark band took its final

(1) Phil. Trans. o, cexxzir p. 91 (1923).
() Phil. Mag., 1, p. 469 (1925).
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position simultaneously with the application of the load and that no residual effect
could not be observed when the load was removed.

The result obtained by K. Oxupa® with a tension specimen of glass, which
was left under the stress of 400kgfem® for 17 hours at the room temperature, showed
that no residual double refraction was detected in it after the removal of the stress.

Ag for celluloid, there have been also some investigations™. Experiments
carried out by Firox and Jessop with tension specimens indicated that the optical
retardation shows an immediate eflect on loading, very nearly proportional to the
applied load, . followed by a progressive creep until an equilibrium value iz ap-
proached, and that the strain follows the laws closely similar to those of the optical
retardation, the initial value being also approximately proportionmal to the applied
load. According to their result, the retardation » and the strain ¢ are connected

with the time ¢ by the relations

= g+ pt! ¥ 4t

e=gy+aliF+ bt
where the constants r, and g are proportional to the applied stress 7, p and o are
very roughly proportional to 7', and ¢ and b are small and irregular. On examin-
ing the relation between straim and optical effect, the result they obtained does not
conform to the hypothesis that stress is the immediate factor in producing artificial
double refraction, and also the hypothesis which makes strain the essential factor.
Thus they were led to establish the linear law

r=oT+Be )
where the constants o, 8 are found to vary within fairly narrow limits for any
given specimen. They have also shown that Coxrr and CHARKO'S result-may be
expressed by the relation

. r=a+bT+ce )
where the first term on the i’ight shows the initial stress and optical effect existing
in the material before loading. Hence it appears that the result CoxEr and CHAERO
is In agreement with that of Froow and JEessor.
As for bakelite, no particular observations seem ever to have been made except

the experiments carried out by I. Araxawa®, who measured the optical effect with
gpecimens of bakelite and not the strain, The result of his observationsishowed

that the formula
r=rotptti+qt

(1Y Memoirs Coll. Eng. Kyushu Tmp. Uniw, 1, p. 172 (1927).

(2) Frrox and Jmssor, loc. cit.; Coxer and CHAREO, Phil. Trans. A., ccxxy, p. 149 (1921); RAMSPECE,
Ann. der Physik, LxxIv, P. 722 (1924).

(35 Proc. Phys., Math, Soc. Japar, v, p. 117 (1928).
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also holds good in the case of bakelite, the constants 7, and p being roughly pro-
portional to the stress 7', and ¢ small.

Now it is worthy of remark that the constant p is roughly proportional to T
in bakelite and to 7 in celluloid. As the creep-time relation for phenolite 1s re-
presented by the equation of the form Y =pt" where p is proportional to the stress,
it appears that the stress-optical property of phenolite is very near to that of bakelite.
This may be due to the fact that phenolite and bakelite are chiefly made of the samie
materials, i.e. formaldehyde and phenol.

(¢) Temperature effect.

The measturements of strain and optical effect described above were carried out
in a few months, so the room temperature varied from 13° to 21°C. In each series
of optical tests which continued some 2 hours, the temperature varied within 2°,
while the temperature remained nearly constant during each set of the strain
measurements which continued some 20 minutes. In the temperature range above
mentioned, the effect of temperature on the optical phenomenon ig not clear, but it
is likely that this source of effect may exist. In this respect, further investigations

are needed by taking a wider range of temperature, say 30° C. or more.

PART IL
STRESS DISTRIBUTION IN SOME TWO-
DIMENSIONAL PROBLEMS.

Chapter 3. Roller Diametrically Compressed.
10. Solution of the problem.

" A number of mathematical solutions and photo-elastic experiments have been
carried out for a roller diametrically compressed®. In this chapter the same pro-
blem is taken up to show that the method proposed by Prof. S. Yorora® can be
conveniently applied to such a problem. In this method stress-components are
given by two general equations, which contain two arbitrary functions’ of complex
variables and the first derivative of one of them. In solving a problem the arbitrary
functions should be properly chosen with due attention to the boundary conditions.

Prof. Yorora's gemeral expression for stress-components in two-dimensional

(1) Hzrrz, Ges. Werk, 1, p. 285; MicEELL, Proc. London Math. Soe., EXXII, P. 85 (1900); MESNAGER
Ann. P et Ch. Mém., (71) 1v, p. 160 (1901} Huser and Fuoms, Phys. Z8, xv, P- 298 (1914); Kinig, Ann.
der Phys., {4) 111, p. 553 (1917); STEINEEIL, Triss. (iesen, (1920); Firow, Brii, Ass. Rep, Liverpool, p. 854
(1928} ; FoprL, Drang und Ziwang, 1, p. 320 (1024) ; ARARAWA, loc. cit.; Rierm, dAnn, der Phys., (4) LXXIX,
p. 145 (1926).

(2) Jouwr. Soc. Mech. Eng. {Japan), v, April 1915,
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problems of elasticity, referred. to .a system of rectangular coordinates z=wz+4y, is
represented by a pair of equations of the form ‘
Ty - 2r =2y I (2)+ Fiy2) L
Trtoy= 2RLEF\(2)]
where F(z) and Fyz) are arbltra,ry functions of z, and R, F { )] 1epresent:, the real
part_of the function Fi(z). The stress-components referred to a system of curvi-
liliear ortllogorm,l= coordinates (w,8) are shown to be connected with these written
above by the éqﬁatiohé | | ‘
oot - ,é_,‘G—ﬂ'éo:,&=ezf”{a‘;c;—o'y—241—}
o’a-(;c-!—,lﬂ-ﬁ =gztoy
where v is the angle which the external nounﬂ to a curve of the «-family makes

i

with the positive axis of .
Now we may take a system of coordinates (w, 8) defined by the l?qT.LLtIOIl

B (1)

where . . z=x+4y, w=«+if
w0, prsn

In the case when «=0, the equation gives the circumference of a circle Wlth
radiug @, the centre being given by a=20 as shown in
Figi 8. In this system of coordinates, the curves of the
a-family on the z-plane are concentric circles with the centre
at the origin of that plane, and the corresponding. curves of
the S-family are straight lines radiating from the origin. In-

the equation (1) the coordinate B is the angle which the
radius vector makes with the positive axis of x, and it is
negative when the radius vector rotates countér-clockwise.

Thug the external normal at a point to the a-curve is coin-

cident with the S-curve,. the radius vector, passing through

the point under consideration, and the normal makes an
angle (—B8) with the positive axis of 4.
Hence we have v=—@B. Therefore we get
cver— B~ Biaef = e=2iAL2i) Jr,'(z)u'g(zn}
cor BB =2R(Fy(2)]
From the equation (1) we have
y=—ae esin 8 .
Tnserting this into the first equation of (2), we get
ocot — B — 2icef = e~ B —2iqe—a sin GBIV (2) 4 Fy(2)]
= e TBlae-w((P— e~ ) F z) - Fi(2)]
=(1-e"-’5~5)(~ae-w)F1’(z)—e°‘”f-’(--8"”)1‘"2(3)
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On changing the independent variables from z to w, we put

Silw)=Fi(z)

JAw)=—e~wFy(z}

Then ' '
Sw)=T'(2) -;%= —ae~¥F(2)

Hence the expression (2) is written as
%—ﬁ?’:’—@’io’:ﬁ:(l =g~ ¥8) £,/ (w) - ex~98F () }
ceee+ BB =2RLf, ()]

This is the general expression for stress-components in the case where the
orthogonal coordinates defined by (1) are used. This form is convenient in treating
‘the problem, as the boundary of the roller is given by the curve a=0.

Let the load P be distributed on the area 2hqb with the uniform radial inten-
sity p, where b is the length of the roller and 2% the small angle made by the
loaded arc ag shown in Figs 6. Then the boundary conditions in the first qua-
drant are

[B1e0=0
lotolamo=0  for (- @)<(w/2—F)
[occlamo=—p for (—@)>(m/2~1)

The conditions for eet may be expressed in an equation of the form

itemo= — 2P h ST L .
(o) =0= [7L+Z( - 1)n - sin L’nhcosznﬁ] ........................ 4)

T To=1
which holds for 0=|8| == The boundary conditions in the other three quadrants
are naturally fulfilled from symmetry.
Now we put
Fia) =L g o=
=0

2 L
Fdw)= %2B2?3+1 g— (@l

=0

Inserting these relations into the first equation of (3), we have
co (=]
" wo—PB—2iafi= —2—19[( 1—e ?"5)22%,42” e-gﬂw+e““ﬂZan+1e'(2"+1“"]
" n=0 N=0) -
This may be written after rearrangement
tect—BR— Bice
= _.__?_Z'e-zna{g(n_,, DAsgniny g—2ﬂ+Bz,1+1—-2'nA2n} emIAB (5)
n=0

Moreover from the second equation of (3) we have

oo+ BA= 2710[2;1 0 +2>" Az e~ co 2.13} ...................................... 6 .

=l
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It the two equations (5) and (6) are added fogether side by side, we have an

equation which does not involve the term of the normal stress B’E, namely,

—1—[’3‘:“'5;/\3:] = {Au-f-ZA-zn g—*#a cog 2:1ﬁ}
2_’P =1

on
— —;’—Ze-”ﬂ {2(7?,—!-1) Agnene—?e+ B2n+1—2nzi-3n} e-2(n+1)ip
=0
As the shearing stress oTB vanishes on the boundary, the imaginary part of the
right-hand member of (7) must be zero when o=0. Thus we have to put
2(n+1Aema1) + Bona1=2n.don=0
or { Bopar—2nden} = —2(n+DAzmeny
" Then the remaining part of the equation’ {7) becomes, when o=0,
. —w—[o’e_&} =_»in+ZAzn.cos anpg.
22) ’ =1 feal .
Ingerting the expression {4) into the left-hand member of this equation, we have

........................................

el

< L, =
- {h+2,(— 1)"--?1— gin 2nfe cos 2-.*1.[3} =4, -E-Z‘Aﬂn cos 2n@

te=i

In order that this relation holds, we take .
Ay= —J’_I. ................ e e i seara ettty e aere e marens (£5)]
Aop=(— I+ % sin 2nk (nE0) ...l et imsee e (10)

By introducing (8) and (10) in the equation (5), we obtain after calculation

— 4 = .
oo — B3 — 2= — -—‘f—(ez"‘—1)2;(—1}’L SN 2R e=2MY i

. =l
Again introducing (9) and (10) in (6), we get

@+§8= —jﬂ[h-I-Z(-—l)” -rlb—sin 2nl. cos 2n3 6"‘-‘"“] ........ e veea(12)

w
=1

These equations enable us to calculate the stress-components at any point. If

we put a=0 in (11) and (12), we have
afi=0
aoe=Pf
= -—ﬁj— h v!-i‘(—l)?”fL gin 2nh cos 2n3
ar’ 7 ' :

4=l

which are the stresses on the boundary and are in accord with the boundary

conditions.
 In the inner domain excepting the circumference, the terms containing the

infinite series may be replaced with simple expressions. Pufting, for the sake

of brevity,
A= — =Dt )\ ,= — g-Bw-3i,

we have, when «>0,
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: Pal<l, Rel<1
Then after long caleulation here omitted we obtain

Z( — 1) gin Znh e—mw = LZ‘ { PR M"}
n=1 2 nel

J O D S
T2 1-A 1-n
- —p—2M gin 2F
(L= (1= 2Xs)

. 1
E -1V sin 2nly e -2 W -~ p—%a gin 2 —da
or { Yesin 2nle e i [ sin 2% (1 +-e )COS 2}3

n=1
+2¢~% cog 2h— (1 —44*)gin 2,6]
where

D={1+eg a4 2% oog 2k co8 28} 3— {222 gin 2h sin 28} 2
In regard to the equation (12), we obtain

oo

1 .
(1) sin 2 cos 2nf3 ¢~2na
A .

e

o
=— i{Z(_l):z—I :T e—na {e‘lui(h-i-ﬁj e @ = 2R (R B) - 2RI~ B) e—'.’n-t(n—ﬂ)}

=1
= *% [].Og {1 .;'_e—ﬂm-‘l—ﬂé(?ll-\-ﬁ)} _]Og {1+B—2a-2£(h+]3)}
+log {1 _l_e—Ea-i-.".E(k.—,B)]. _10g {1 +3—£’a—2£(h.—ﬁ)} ]

Making use of the four equations of the type

log {1 +e-tu+2ichef} =_1ogc[ {l+e-% cos 2h+3)}?

o ot I I =% gin AL+ )
. RIeA 212 -1
+ {e~ e sin 3(h+ 80} ] +itgt T <08 2+ )
we obtain

oo

1.

(=1 o, Bn 2ndi cos 2n@ e—2na
¥

w1

+tg™l —
2 e-hoos Ah4-8) 7 e*etcos 2R~ R8)

Inserting (13} into (11} and (14) into (12) respectively, we have

. N sin 2% +8) sin 2(7— /) ]

&'c}uﬁ,é—mo}?h% (1) sin 2k [(1+c—4ﬂ) cos 23
+2z-% 008 8% —{(1—et}gin 2ﬁ‘]

—~ 3 sin 2%+ 8) sin 27— )
= | te-1 -1 —~2
wot =" [fg o teos Wt ) T BT g toos Ah—f) h]

The first equation of (15) gives rise to the following two equations—

19
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oei— ,G,G-—M(l — =% sin 2h {{1+e~*) cos 23+ 26-% cos 2h} l

oeﬁ (1 — e~ (] —e—4=)gin 2h sin 23 J

In the case where 2h is very small, we may put approximately

gin 2fi=2%
cos 2h =1
tg—1[sin 2h/{et*+cos 2h )]— AJ(1 -+ e2e)

Then the equation (15) may be written
Qam,@—z-ioﬁ:%u—e-%) [(1-}-6“4“)(:03 23

+2e-2a—i(1— —4w) 5in 26 |

A~ e Bp f o 2heos304sin2B 0 [ e iiieeniieenes
coet BA= [“ ¢+ cos 23— 2h sin 23

2h cos 23 —sin 28
-1 —aj,
T e oos 25+ 20 siu 28 ]

Dy={1+e-1a+42¢-2 cos 2B} — {4he= 5in 2B} °

where

Hence on the horizontal diameter (8=0), we obtiain

—~ 8hp 1—e=
fer— A== ey

Yy dhp l—e%
A T

Solving these and putting
P=2habp
E=¢o=uzfn

we have

[oacz]ﬁ 0= £ {1_52}2

ek L 1+E?

O <0 N SR B PR (7
[BR=0=—"0% {(14-5:3)2 1}
[eBle-0=0

On the vertical diameter (B:—%) we have

sz 1
o:oa—-ﬁﬁ 9?0:/3— TTw 1—e

_4hp 1de-2e
ocoH- ﬁﬁ 2 ey
x l—e "
Solving these we obtain
P 349
mab 1-7°

o~ P i
[8Bl=—m2= ab

(Bl emmp= O

[&&];n —mj=—
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where ' p=e-e=yla
The equations (17) and (18) are in agreement with the
results already given by previous authors™ under the as-

sumptidu of point loading. The results of these caleulations
arc plotted in Fig 7.

As o measure of the accuracy of the above reduction,
the total pressure on the horizontal diameter is calculated by
the pressure

fb[ﬁﬁ];a=odn 2 { af)f{(l—fg—z)—z ~1}aat
0

=P Fig. 7.

Thus the above expression for 88 in (17) is quite accurate on the horizontal
diameter, while the stress e on the vertical diameter becomes infinite when n=1.

11. Isoclinic and isochromatie lines.

In order to obtain the equation of isoclinic lines, the direction of the principal
stress will be first considered. Let d be the angle which the normal to one of the
principal planes makes with the axis of z, and it is measured counter-clockwise

from the pos1tlve direction of the said axis. Then we have the equation
't'0'23 27’,"‘[0‘3,—0‘1,']'

In order to apply this equation to the present problem, we denote by ¢ the
angle between the normal to a prineipal plane and the rading vector passing
through a given point. Then

tg 2 =20f3] {orot— B}
< being measured counter-clockwise from the radius vector.

With the angle v which is equal to —28, the angle & may be written

d=rto

p=0+p8
Hence we get

t AOEBI=2 0B FHE—BBY e e eeeee s (19)
Inserting (15a) into the right-hand member of (19), we have

(1 —e¢—*a)sin 263
(14-e—42) cos 28+ 2e—2% cos 2R

This equation is satisfied by two values of 6, differing by 72, which may be

tg 2(0+8)=

called 6, and 6. From the above equation which is considered as a guadratic in -

—2a

™™, we obtain, in the case when cos 2h=1,

(1) Hzrrz, Micaenr, and ARsxawa, loc. ¢it, /
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9

¢~z —gin 6/8in (9, +28) } _________ L (20)
e~ 2= —cos ,/c0s (F+23)

These two equations may be transformed into
PP By cOb B1=0% o e e S (21)
PPt =By tgfe=al i B IR ETTTTESTRIORY (22)
respectively.  These are the equafions of the isoclinic line, ¢y and ¢ being the
parameters.
If >0 and y>0, we see from (21)

By gl
cot 6= L‘!‘%_Jj__>0
2zy
while from (22)
2 o2 g2
tan 6= - T Y g
2y

Thus a value of 6, lying between zero and =2 satisfies
the first condition, and 6: may be taken equal to 6, +[2
Accordingly the equations (21) and (22) represent the same
system of curves. We may take either of them to trace the
isoclinic lines. Fig, 8 shows the results of calculation for
the first quadrant of the section, # being taken as 0°, 10°

x 20° &e. .
Fig &, Next, the theory of elasticity shows that the prinecipal

stress difference § at a point is connected with the stress-components by the relation
' —_ — 12
8= {(a—pAy +2apy]
Inserting the equations (15a) into the above, we have

_Apsin2h 1—e- =
T oor D
_2Psin2h T—e%e
T walh Dz

S

As Sb=EKn, the order of extinction n may be given by the following equation :—

. 4P &in2h 1—e2e .
= T 2 D O R T LR TR (23)

where K is the coefficient of photo-elastic extinction.
Neglecting the term containing A* in the expression for D, of the equations
(16), we have approximately
Ihi2=14-¢—4+ 22 cos 28.
Again putting sin 24=2h, we have from (23)

Lo AP 1—¢=
Twa K 1+e—de 48— gos 28
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This is the equation of the isochromatic line for the
present problem. “Fig. 9 shows such lines obtained by cal-
culation in the case where 4P[waK'=3. In this figure, all
lines touch with one another at the end of the vertical dia-
meter. This is due to the approximation with which the

equation (24) is derived.

In order to obtain the exact expression for n on the

axis of v, we put 8= —=[2 in (28). Then we get

n= 4P sin 2h ]—e-
a7a X 20 14 e-1e—3e-2 cos 2k

[

or, with n=e¢" :y/a,

_ 4P sin 2k 1—7?
TwgE 2R 140 -20 cos 8l

..(25)

i

Differentiating n of (25) with respect to » and equating the result to zero, we

have approximately

At this value of %, the equation (25) gives the maximum value of n, namely,

2P coth

wa K 1—2h &7

n

The highest order of extinction does mot occur on the circumference of the

circle.

12. Solution based on Hertz’s theory of contact.

The elastic problem of stresses which arise when two cylinders, running parallel
with each other, are pressed together was solved by M. T. Hurzr and 8. Fuoms™
in accordance with Herrz's general theory of contact. Now consider a special case
where a cylinder (K, p,) is pressed on a plate (Hs, p.), where the bodies in the
‘unstressed state are in contact with at the origin of (v, 4) and where the axis of =z
is directed along the surface of the plate, the z-axis conforming in direction with
the axis of the cylinder. Then the result given by Huper and Fucas shows that
the stress-distribution in the mneibourhood of the origin can be répreéented by the

. equations

E[ E2 .

a.m=g_:_'-‘t {]/?)+it12(2_ i ) _2}
w qn? T 4wyt

, 4r'a {1-—;&12 +1—,U22 }

(1)} loe. cil.
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Y
Fy= zy:e T

e v ) e (28)
4 Y

o _?’__J{I/‘v+'w _1}
T W v

20" oyl V P
= e s
7 o +wiy Vgl

where

20 1 (&Y —w)+ NV IE - WP )
2w width of the contact area,
a: radius of the eylinder,

!

#': applied lond per unit length of the cylinder,

B, E,: Youxe’s moduli,

Fas P2 i Porssox's ratios.

On the axis of y, we have, by putting =0 in (28),

219'{ —— u’ }
=" 12 Myt — ) —————— ———
T Wy tw'—y) i +w?

2p' w?

V= Nt

_.?Ji{ P! }
Tr= (/1w —)
7=0

These normal stresses are the principal ones. Hence on the axis of y the dif-

fences of two principal stresses are as follows:—

419’[ w hMé;“@Tz?—w]

Ty~ Tyg=""

o LSyt wt w
WL _w STy
CEl [2 Vi (L—p) > J ........................ (30)
_ATL ety
R [2 /\/y"-!-w"’u# w ]

In order to determine the order of magnitude of the above three exXpressions,,
the coefficients of 4p’/7w are calculated for several values of y as shown in the
next table. In prepafing the table, a phenolite cylinder is considered as an example
and the value of w is taken at 0.36 as shown in Chapter 2.

Value of Coeflicients of % in the expressions of
Y Ty~ o0 Gy — G
0 0. ~014 | 014
05 w 0.27 - 0.05 0.23 -
1w 0.50 0,09 0.20
2w 0.21 Q.07 013

3w 016 0.086 0.10



0
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4 w 012 0.04 0.08
5w 0,10 0.03 0.06
10 w (.05 0.02 0.03

Tt may be found from this table that the value of (¢y— o) is greater than those
of the other two expressions.

Differentiaiing (sy—o,) with respect to y and equating the result to zero, we
have 4, 'as a value of y

1, =0.786w
At this point, {c,—0c.) becomes a maximum, its value being
(oy~oz) = 0.300%

As Fig 9 shows, the highest order of extinction in the whole section occurs on
the axiz of compression. It may be here said that the maximum given by the
above equation is the greatest value of the principal stress difference in the section.

Putting < =ha, and denoting the distance between the point of the maximum

and the centre of the circle by ma, we get

y1=1—-%’~x1—0.786hl .................. e B

N being the angle at the centré made by the arc w. As we may write (oy— ;)
Xb=Kn on the axis of y, the highest order of extinction n is given by the eguation
—oso0 2 b
= 0300 ww. K

_op'b 06
T waE Wy

The equation (31) corresponds to (26) given in the previous article, although
they are not in thorough agreement with each other, owing to the fact that the
distribution of the applied load differs in the two cases. Nevertheless, it is ascertained
from the two equations that the greatest shearing stress in the section occurs at a

point on the axis of compression lying a little inside the circumference.

13. Ezxperiment,

The photo-elastic observation was carried out by means of the apparatus as
shown in Figs, 10 and 11. In this apparatus a mercury vapour lamp is used as a

iy _L
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licht source. The polarizer and analyzer consist of Gran-Taompsox prisms supplied
by Curl Zeiss & Co. The beam of light
from the source reaches the specimen after
passing tin‘bugh a condenser, a 1ens, thé.
polarizer and a lens in succession. The
specimen is then projected’ by a lens on a
dry plate in a camera through a shutter,
The analyzer and a Wratten light filter
No. 774 are placed in front of the camera.

The. focal lengih of each of the three lenses
mentioned above is 30cm, the relative aperture being
Fl4.5. The quarter-wave plates installed in the polari-
zer and the analyzer are easily removable from them.
A circular disec of phenolite, 35mm in diameter
and 6 mm in thickness, was compressed by means of a
device as shown in Figi 12, The disec wag annealed
before the test to remove the initial stress. The isoch-
romatic lines were photographed at the instant 1 minute
after loading (Fig, 18), the load applied being 43.7 kg.
At the instant 15 minutes after loading, Fig 14 was

taken under the same load. ' Fig, 12,

Fig 14,

If the coefficient of photo-elastic extinction® X is taken at 10.6 kgjem as shown
in Chapter 1, we have in this case
| APImaR =3
which sgrees with thoe relation assumed in preparing the theoretical isochromatic
lines shown in Fig. 9. Thus Fig. 13 should be compared with Fig. 9.
The comparison of Fig, 18 with Fig. 1% shows that the isochromatic lines taken
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Pig 15,

at the instant 15 minutes after loading differ
from those obtaihed 1 minute after loading,
particularly in the central part of the figure.
On removing the guarter-wave plates from
the apparatus, the isoclinic lines were photo-

graphed as represzented by the dark broad
bands, for example, of Figs. 15, 16 and 17. R
With these bands the theoretical lines, Fig. 8, Fig. 17.
are to be compared.

For photographing the isochromatic and isoclinic lines, the Ilford Screencd

Chromatic Plates were used, the time of exposure being a tenth of a second.

The isochromatic line of the highest order surrounds a point which is a little
distant from the periphery (Fig. 13), the distance between this point and the centre
of the circle being measured to be 0.96 times the radius. In order to compare this
observed value with the calculated one given by (31), {11e‘ clagtic constants are taken
as follows :(— ‘

E,=4.3>< 1G4 kgfem?, p=036 for phenolite,
=2 % 1(® i.cg,fcm’,' p:=03  for steel.
With P[b=p'=72.8kg/cm, we have from the first equation of (28}
w=0.332 ¢, .
and from (31)

7:;=0.974.

The point of the greatest shearing stress can not be so acculately determined
trom the photograph that the observation and the calculation may exactly coincide.
Moreover, it is hardly necessary to add that the cylinder considered in Hrrrz's
fheory is a long one, while the disc here tested is comparatively thin and should be

congidered as a problem.of generalized plane. stress.
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Chapter 4, Rectangular Plate Compressed on Two
Opposite Sides,

14. Solution of the problem.

In the case of a rectangular plate, it is found difficult to make use of the
method applied in the preceding chapter. Hence the present problem is solved by
means of AIRY’s stress-function F, which satisfies the differential equation

BF L BF  OF
gzt Caxtayt | eyt

The stress-components may be expressed by the equations

»F_OF __®F
3’ Casirw g T= Bray e

1)

Gg=

In a rectangular plate subjected to symmetrical loads
as shown in Fig. 18, we have to satisfy the conditions
that the normal and shearing stresses on the boundary
surface are zero except at the region where the load acts.
Thus there are eight conditions

(i) [esls=o=[omlsmq=0

(ii) [ouly-o=loyly=p= — P(x}
(1ii) [r=0=[=hra=0

{iv) [Fly=o=[+F=0=0

The load Pz) on the side y=0 iz assumed to be guite the same as that on the
side y=0, and both loads are symmetrical about the centre line C-C. P(z) being
given in the interval (0, a), it may be represented in the form

Pla)= i:—)l i.ﬂn‘ sin ?E—;ﬁ ............................................... 2)

TS
where
4—?,—1,; =% foP(x) sin “dz
and P, is the value of P(z) at a chosen point. .
Ag P(z) is assumed to be symmetrical about z=a/2, the terms containing sines
of even multiples of wafa disappear, and we may take odd values of = in (2).
Now we take a stress-function F as follows :—

F=F+F+F PR &) |
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where .
4Pz nwh nw by . nwx
Fl —Zﬂ.n R 2qBCh -‘?—JGosh @ (y—E)JSl‘ﬂ7
a? i -1 . nar(y —
_4R 2z ZBn s ('nﬂb +Sinh"‘mb) {nwy Sinh’w(‘u )]
& N a a a a
+'n-'1rf?;—b) Sinh mry} nara;
@ o
_4n U (nno nwo \ 71w o, nalz—a)
ZCn e R
prlz—al . | wEE iy
+_b Sinh a } sin — =

In these expressions n is assumed to be odd to conform to the boundary condi-

tions.
Asg
TR _Bh 3 e ) Cosh ™ () gin 222 1
P ZAn.uech C sh 2 ( 2)sm "
i =l
BF,-; 4P1 ZB;:('nﬂb-FS hmrb) {20 h'mr('u )+2C oh "FY.
7Y i P D) 0D g, BT g b )
@ 71 47
”Fs _4R nwa. m nme . o nwlr—a)
Zc'ﬂ( +8inh %) ™ 7 Sinh =
prl{ @ —0) nex] . nEy
+—-—b Sinh—— b }51 5 ]

a5 vanishes for =0 and z=a respectively.

are satisfied.

Next referring to the conditions (ii), we have

5 1"1

San
axt

& FB

[

nax) ., Ny
Six h—-} gin —

4R Z nad A B gy BT
Z.AnS ch C sh— (y—- )Sm -
4P12Bn( & hﬁﬂ)— {nﬂrus hmr('fl by
a
+____mr(y— 9 8inh ?ﬂ} sin 72
@ 2
-1 nr a—a)
Zoﬂ( "4 ginh 22%) {2 Qe
mrx nmy . nal x—a)
+2Cogh —— 5 T —— Sinh b
nalz—a)

b b

Hence the boundary conditions (i)

/

The second and third expressions of (5) vanish for y=5b as well as y=0. Thus
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(5

To satisfy the conditions (ii), we have to put from (2) and (6)
=A'n’ B T I B L L R T R I S N .-..(7)
In regard to the shearing stress =, we have

[ F]_ ‘l_fi n'smM ....... (6)

=0 daE

L ﬁ _E anf b M
ey o o AnSech Sinh 2% (y~2) cos
" -1 —h
2% _ih Zzan(”"b+8 i N
2xdy = @ 2
£ Gosh 'n.ar(y—b) -nvr(y b) hmru} con T R €3
a 41 &€ 4]
FFy gj nat naa "1 . . nnle—a) . w7x
a_zaJ ZO»( + Sinh " b ) {Slnh'—‘*“‘—_b +8in b
mrr na{t—a) nalr—a) nwr) nwk
.y — Cos h———fb +—p Co Cosh } b
Putting =0 in (8), we have
¥I) 4B b p o, b \
[axay]m=o_ g nBech g Sinh ( 2) |
PP 4P nah b 'r-'-;rfy B)
[“away]m - ZB,,( +Sinh vﬁ) * {pinn =R
e (D)
+5m11’"”’ Y oty BTYB) Pl h”’”’}
o 4] 4
aili, _ 4n -n'.'r?;
[B.I'By]:a=ﬂ_ RZI:C”
Expanding Sinh —(y—i> in the first expression in FoumiEr’s cosine series,

we have

i
[a.‘l';;l]:c=0

4P =2 rab rmh oy
Z — m(eo‘s nw— I)Cosh cos 3

2, ., 4  rab cos Y
7 nfatrh? T b
n and r being odd numbers.
By a similar process, the second expression of (9) can be transformed into the
form ' ‘

7,
=

4R = By n2ra’b b nry -
= ZmerS b, Z T (it (Hcc’gh >C°S b
¢
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3L

pah
_4R Z % BE nira’b 1-+Cosh @ o ™Y
B :Zzaf?'i T (niatb e EI?+ Sinhlb' b X
' ' w [

where n and r are odd.
Now put, for simplicity,

4 reth
y = .
Yia = nia bt : . .
.......... (10}
4 Lo B, b b
?7) 3 afrah (I-I-C hv#)('rﬂ' LS h?'.'rb)

Zm-(z =_1; (nzaz_i_,rzb:)z

Adding the three equations of (9), we have with (10}
aﬂF]

anoy
If the terms enclosed with square brackets in the above equation are equa,l to

y

_ 4P, Z[Z {A, Ym-f-B:Zm( )}-}-C’n]cosT

a:=0
‘

zero, the first condition of (111) is satisfied. So we put

Cn+i'{xi;--Ym--f-Ber*(%)}=0 e eaaeena ey
Tl "

where B, and (, are still unknow. .
Ag to the second condition of (ifi), it is easily seen that

' B'T]
3By de=a 81:3J

=)

Thus the condition is é,lso expressed by (11).

Next, putting y=0 in (8), we get

o:F, 4P, il niwh b
[a:rau]y..o - ’gdianmh——% €08 —_—
8217, 4.[31 nmy
B e
axay]y=o 2-! 1€
$Fy 4Pz )'-1{ o nmlz—a) | . o es
[a—xsy]y ZC ( ' +8inh = Sinh———— 3 +8inh 5

Nl naln—oa) na(r—a) nay
+ b Cosh_b +_ZJ Cosh b}

The lagt expression can be transformed into the form

31 Iy 4p, = © - nyral® ( ?‘wu.) nwy
== o (14 Oosh =) cos——
[a‘(-ayij . ,ZE . Z 1+Cos] b

- _(n?b"’ Trtatp

T b

Nl

_AA 3 Z Z CrZar ( )CDST

o= Pryey

ll

where
Zm(ﬂ) -%ﬁ(mo shﬁ’;)—“)(“;ﬂs hT)- e (12)
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Hence we have

3'F 1 _. 4PZ
3xdy-ly =0 1.-

[AnT h4b'+BvL+ Z CrZony ( 5 ):ICOS?'E:;_x

In order that the first condltlon of (iv) may be satisfied, we have to put

= b
Bu- Z CrZiny (%) + Adn Tanh?—:& =0 e it e m e e e (13y
r=1 4

The other condition of (iv) will be also satisfied by (18) as

a*r
Bxay] [aaa‘y]w

y._b

An being given by (7), B, and €, are found by solving the two systems of
equations (11) and (13) simultaneously. As each of the latter equations contains
two series of unknowns in it, the numerical calculation is extremely tedious. To

obtain a system of equations which involves a series of unknowns, we write by (13)
3 o rab
Br=— 302 (4) - 4rann 22

Inserting this expression into (11), we get
o oo o I
Cn— ZZC&‘ZJW (%) Zrs (%)= Z A {Zﬂ.’." (%)Tanh%— Ym-} .......... {14)
Feli=l =1 ’

As the right-hand member of (14) is known by finding 4,, the equations, which
are simultaneous ones of the first degree involving infinite number of unknowns,
can be solved approximately by the method of iteration. On finding C,, the values
of B, are obtained from (13).

When the coefficients 4., B, and €, are known, the stress-components at 2

point are defermined from (1).

15. Numerical example.

As an example of the above solution, a square plate whose side is o is supposed
to be compressed by a pair of uniform loads distributed over the length of o5 with
the intensity p as shown in Fig 19, Thus we have

Play=p for 04azx=06a
Pla)=0 for z<04c¢ and z>06c
The sine series representing P(z) iz then

4p 2,1 nw Nk
Pix)= :né snusmlosm—“

Comparing thiz with (2) and (7), we have
B=p
=1

.471 An=‘( 1) 2 Sll‘lﬁ
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Table 1,

n being odd. The values of 4, are calculafed as shown in Table 1, As =0, we
have from (10) and (12)

I
[t
}5 a & nir . -
Z’"‘(Z) =z "”'(f) = (nz—;-:-e)é(1+009h ra) (rm+Binhrr)
If we put
s & iZJH'Zﬂ'S }
et e 1B
ol i
)@n= Z.f_[r {Zm' Tanh T - Irm'} }»
=l =
we may;write (14) in the form '
Cﬂ"" iomscs=ﬁn .
b=l
or
G — Loen O+ o0l + 00 G F o0, Cr .o L } =8
Cy— Lo O FoegeCiForas Co o, 4.} =5,
Co— o1+ oeaClh FoeasChd o Cr .. L =6 (16)
S I L T
C,— {059101'1'047305‘}‘0‘7505""9‘7707 +..- } =5,
To solve the simultaneous equations (16), we first neglect ¢y, C5, .... in the

first one, and find Cy, the first approximate value of Cj, from the equation
(1—2e;}C)' =y
Inserting €y into the second equation and neglecting (s, C;, ..., we find CY,
the first approximate value of C;, from the 'eciuation
(1—0} Co" = B +oenCy

Ingerting € and (7 into the third equation and neglecting C;, Co ..., We
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find €Y, the first approximate value of Cf, from the equation

. (1 =cees) 05" = Bs + oGl +oegeCy’
By a similar procedure, we find €7, CJ, .... as the first approximate values of
€y, Ch . ..., respectively.
"In the second step, we insert €y, €5, .... into the first equation of (16) and

find (", the second approximate value of €, from the equation
(A=Y =8, FergaCs Fonsle FozCol 4+ vt i e

Inserting €7, O, €7, .... into the second equation, we find (4", the second

approximate value of €, from the eQuation _ '
(1—06g) G = Br+ oy O+ oG’ oG+ crenaan

By a similar process, we ﬁhd ¢, G, .. .. as the second approximate values
of ¢ O ...., respectively. '

The third, the fourth, .... approximate values of O, are found successively.
Such trials are repeated until the precision of the values of (¢, is secured in the
decimal place specified.

In the actual calculation, » and s are taken up to 25, and # is up to 79. Al
though higher values of r than this are needed to secure the accuracy of o and
B, the caléulation is too lengthy to do so. o and B, calculated by (15) are given
in Table 2, where the last figure of each value is not sufficiently accurate. On
finding C,, the values of B, are determined from (13), the results being given in
Table 1, The last figures of B, and (¢, may not be sufficiently accurate.

cing - ﬁ}l-

3 = 13l sl 79|\ i/7]| @2 23]25)
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77 |07508| #48E| 4201 2840| 7950 2¢52| 2oqm| 12| ;4| 1259 | 1095 | o | 0827 4244
13 {amme| ool 378\ 33/ 288l 239|207 | 7| 52| 29| 5| set| 58] o4
/5 | o2} 04| Fa9l 39| 77| 23d| Zee| g sE| s7e) 23| soe| 0F5] o/3d
7V asey 29| 32| 2m| 25| zza| i) e s5| 39| | ne| ore| oo
1q | onz| zéz| 292| zs2) 2dg)| 5| eoa| s | w5 saw| szé| eit| st} cosE
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23 |awe| 28| 227| zz3| 22| g 8| se| me| 37} 28| 1| ws| oesE
25 | aoi?| 5¢| o8| 207 27| el FHN | wa| £33} 22| K3 ed) 0048

Table 2,

Owing to the slow diminution of the coefficients, the expressions for stress-

components are slowly convergent, particularly in the region near the boundary.
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Taking a part of the expression (1) el @ —oulP
NG &2 .
for o, for example, we have w2\ as |2z | 03| 0a |05 |38 ar |0z |0z |0s | s
= - 0. _|-0a05 |- 0016 |-2055 | 2057 |-a0a7|_01 | o065 | a0rs | arzzl as2d | Gav?
from (4), at ©=¢/2 and y=0, 07 aezt|poas|-go2d| aozz| ao76| 82 | eoez] ooss | alnz| 6495 6547

2:F, 4P = gy 03 |-a0id|-aors| gorZ | Qiéz) ooss| 0z | go72| areg | 0222|0328 M.'f_
B, STy e 09 -0093| a008| 2037) 0075 | 2093 |_as | o097 | qra7 1 0233|025 | a3er
v T a1 45 | ¢ | qors| 0oas| 40%8| G094| 4% | 4699 | 6/59 | 235 | 6309 | a23d

The numerical value of this

- . 3 /P (4) sp
expression s not accurately - = :
. . 7 & :
determined by using A4, for Ya\| %/ | 22 | 0 |04 | 45 |7an]| 07 | 02 | 23 | 04 | 85
al |aod| aoss| aizz | azss| o | a7 | aeer | ae9é| azar] aad a7 s
up to 25, because the values a2 |aozg| 0059| a/20 | 04a5] 0 | 0.2 | amid| aidd | 0295 0579 | a2
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not be negligibly small as the 2el ol ¢ | ?1e Tabl 0; 77 | res | GTR0NazyY [0dY
o able ‘
table suggests. A similar re. %,
mark applies to Fy and I, still o
higher values of % aud s than oft

in the present computation will X

. N .0 i 0.5
lead to a very tedious calcula- w
-Gl y=07a

tion.

The stress-components in
the central part of the plate are
caleulated from (1), the resulty
being given in Table 3 and
plotted in Figs. 20~.22,

As a measure of the ac-
curacy of the above caleulations,

the sum of o, from =0 to

2=a on the section paralle! to
the axis of z is measured

graphically. The results for a

plate of unit thickness are given” 02
in the next table, the true
. . ar
value of the numerical “coeffici-
ent being 0.2, as the applied” ‘ x/"2
T ’ pphec. g a7 0z 03 04 a5
load is given by P=0.2ap. _ Fig, 22,
Bections . Measured values Error in 9%
y=02a 0.2008 ap +0.4
034 0.2002 ap —0.1
04a 0.1984 ap —0.8

05a 0.1992 ap —04
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Thus the measured values are in good agreement with the applied load, show-
ing that the expression for o, is quite accurate on the sections considered.
The values of the principal stress difference S at various points are calculated

in order to trace the isochromatic line, viz.,

*_g_ on—oy\¥ | (2722
.?J_[( » ) +( p) ]
the result being given in Table 3, With the relations Sd=Knr and P=0.2 apd, we

have
P8
PEeK
where 7 is the order of extinction and K the coefficient of photo-elastic extinction.

Taking .1)/£II{: 2, we get
n=10 S/P

This equation enables us to compute the order of ex-
tinction at the points where the values of Sfp are known.

Tracing the loci of the integral values of n, we get the 7
theoretical isochromatic lines as shown in Fig, 23, Owing | W

to the slow convergency of the expression, the isochroma-

tic lines in the region near the boundary can not be ac- . /\
curately traced. ,/Ag"
The determination of the stresy distribution near the - ﬂ
boundary where the external force acts, is important for Fig. 23
drawing isochromatic lines. To meet this desire, we may
gimplify the problem by comsidering a semi-infinite plate, W2
A B

of which the boundary is partially subjected fo a uni-
formly distributed pressure, viz. p per unit length of the
limited region 4R, Fig. 24 . Fig. 24.

Such a problem was already dealt with by CoxEr and Frron™, and the iso-
chromatic lines are known to be circular arcs passing th'rough A and B. Parti-
cularly the isochromatic line of the highest order is given by the semi-circle of the
diameter 4B, while the line of the order zero is coincident with the straight line

AB, of which the two points 4 and B are to be discarded.

16. Expériment.

In order to compare the calculation carried out in the previous article with the
experiment, a square plate of phenolite, 33 x 83 x6 mm, was tested under polarized

(1} “ Pholo-elasticily,” § 4.°22. p. 352.
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light by means of the apparatus described before (Figs. 10 and 11). To make the
pressure distribution as uniform as possible, a layer of leather strip, 6.6 mm in
length, such as used for packing of valves was inserted between the specimen and
the compression surface of the machine, and the load of 70 kg was applied through
the leather, as shown in Fig. 25,

Fig. 26.

In the first step the isochromatic lines were photographed at the instant 1
minute after loading (Fig. 26), In the present case the load P is 70kg, and the
Iength of the side of the specimen o is 8.8 ecm. The coefficient of photo-elastic ex-
tinction K; being ' equal to 10.6 kgfem as shown in the end of Article 8, we have
PlaK,=2, which is coincident with the value taken in drawing the theoretical iso-
chromatic lines shown in Fig. 28, _ .

Comparing Fig. 23 with Fig. 26, we find that the theoretical and observed lines
are in fairly good agreement with each other in the central part of the plate. In
the region near the load, the isochromatic lines assemble at the extreme points of
the load, as the theory based-on uniform surface loading leads one to expect. In
addition to such dark bands, there are some other curves which can not be ex-
plained on the ground of the present caleulation. These curves may be probably
due to the variation from the uniform distribution of pressure and also to the
presence of initial stress. Along the remaining part of the loaded edges there are
thick dark bands, but it iz not clear whether they are of the zeroth order of ex-
tinction. )

The isoclinic lines were then photographed under plane polarized light, Figs.
27T~31 being typical examples. In Fig. 27, it is readily found that the principal axes
coincide with the horizontal and vertical axes of symmetry, which agrees with the
calculation. As Coxrr and Firow showed in the problem of a semi-infinite plate
~ described before, Fig. 23, the theoretical isoclinic lineg near the loaded area are

known to be rectangular hyperbolas passing through the points 4, B, whose
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asymptotes make an angle with the horizontal and vertical which is equal to the
inclination of the principal stresses. The isoclinic lines appearing 'as dark broed
bands in Figs, 2831 start from the extreme points of the loaded area and bend

- a8 the theory suggests.

% - ¢

SUMMARY,

(1) If we represent the relation between stress and optical effect in an equation
of the form Sd=IK.n, the value of K, varies with the fime elapsed after loading.
In quantitative analysis of an isochromatic lines, we have to take K, corresponding .
to the same duration of time as is observed when we take the line under considera-
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tion. At the iustant of loading, i. e, {=0, Ko for phenolite is 11.0kgjem for the
green line of the mercury vapouid lamp. This figure is found to be much smaller
than the wvalues for glasz and celluloid, and it is a little smaller than that for
bakelite.

(2) There is a considerable creep of strain, which follows a law similar to that
of the optical effect. So roughly speaking, the optical effect is proportional to strain,
i. e., the photo-elastic phenomenon may be interpreted as o result caused by strain.

(3) Isochromatic and isoclinic lines theoretically determined for a roller dia-
metrically compressed are shown to be in good agreement in general feature with
those obtained experimenially. Isochromatic lines photographed at the instant 15
minutes after loading are found to be greatly different from those taken at one
minute after loading. '

(4) Tsochromatic-lines in a rectangular plate compressed on two opposite sides
are determined by caleulation and experiment. Owing to the glow convergency of
the series appearing in the expressions for stress-components, particularly in the re-
gion near the boundary, the determination of stress in that region can be hardly
performed. In the central part of the plate, the caleulation is in fairly good agree-
ment with the experiment. For the region near the boundary the result of the
calculation of a semi-infinite plate is taken to complete the consgtruction of isochro-
matic lines. '

In conclusion the author wishes to acknowledge his indebtedness to Prof. A.

Owo for helpful suggestions and criticisms.




