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By Masaru Yasumi, C. E., Assoc. Member.

Synoepsis

This paper is, so to speak, an extension of the Dr. Nadai's theories found in the
“ Elastische Flitten”, The author discusses the geperal nature of the stresses due to
rectangular partial uniform loads in rectangular siabs. He has also taken fnto account
the effect of the side support yielding. :

Special attention jis paid to the application of the author's theories to the design of
reinforced concrete floors in highway bridges.
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Chapter 1. General remarks.
1, Introductory mnote.

The problems of rectangular slabs seem to have been fully discussed by
eminent scholars both in this country and abroad, but to apply the theories
thus developed to particular cases, some more considerations are necessary.

Formulas for stresses in slabs, whether theoretical or experimental, are
for those on rigid unyielding side supports.

In bridge floors, for example, reinforced conerste slabs are supported by
cross beams, stringers or rain girders, and the effect of side support yielding
is by no means negligible, and often leads to a considerable change of stresses.

In this connection a brief treatment is found in Mr. Marcus’ book,
“ Theorie Elastischer Gewebe und ibhre Anwendung auf die Berechnung bieg-
samer Platten”. Hinted by this discussion I tried to get a more definite
idea of the effect of side support yielding. To avoid confusion I obtained
solutions for isotropie plates. The solutions are limited to the cases where
Lévy’s solution is applicable in simple forms.

The solutions for more complicated cases, which I omitted because I
failed to obtain them in compact forms, are not at all impossible if we don’t
spare time and labour.
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Fig. 18 Modes of Supporting Rectangular ‘Slabs in Bridge Floors,
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2. How the slabs are supported in bridge floors and how
~ the support yielding affects stresses.

In bridge floors the rectangular slabs are supported by their four sides
or by their two opposite sides, the other sides being unsupported. -Let us
call the former the “four side support slabs” and the latter the. ¢ two cude
gupport slabs .

These side supports have certain degrees of rigidity and their yielding
affects stresses. In deck plate girders, if the slabs are supported directly by
the main girders and the cross beams connecting them, they ar'e- “ four side
support slabs”, In this case the sides supported by the main girders may
be considered rigid and the yielding of the cross beams only affects the
stresses. For four side support slabs see PL 1 (2), (3).

3. Considerations on two side sﬁpport slabs,

Pl 1 (1), (4) are examples of “two side support slabs”. The slabs are
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supported by eross beams only in PL 1 (D) and by the stringers in Pl 1 @.

In this case if the side supports are rigid, the bending moment along
the support will be zero, bu i they yield and the side of the slabs follow
them, some bending moment will be expected along the support line.

In practice little attention is paid to the so called “ distributing barg .

In the most unfavourable load position shown by Fig. 5, the bending mo-
ment due to the yielding of the support may overstress the distributing bars.

If the side supports are rigid and the load is not concentrated between
unsupported sides, no special consideration is necessary as to distributing bars,
and a poor reinforcement will be all right, but in comparatively long slabs
such as slab bridges or the floors of trusses and through plate girders, Fig.
6, 7, 8 tfull knowledge of stress distribution is required for reasonable
reinforcement parallel to the long sides. The bending moment in the direc-
tion of distributing bars caused by the concentration of the load is by no
means negligible; they reach 20 to 80% of the main bending moment due
to usual distributed wheel loads. See PL 2, and for particulars read Art. 1.
Chapt. 4. '

Some more considerations are necessary as to main stresses. In common
practice dimensions of slabs are determi_ned by the bending moment calcu-
lated with effective width obtained experimentally with concentrated loads at
the centers of slaba, '

But in two side support slabs the maximum’ bending moment will occur
at the unsupported sides, so that the stresses thus caleulated will be insufficient

near the unsupported sides. The most unfavourable load position is shown

in Fig, 4.

Chapter 2. On the nature of stresses in slabs.

1. Fundamental equations.

As general equations: for deflections and stresses in plates we have,

8w 84w
. - Y '
] ] A M= -}-"(axz » ayz) e
Bending moment 9w a7p

My=—N a,—‘}._,-i-yﬁ
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Shearing moment = — (L 3w _
g May=—(1 ”)Naxay ............................ )
o
| SmmX 20
Shear ' ' sdw T 423
w
| 8- N
where
_dtw | tw
dw= 8x? + ay®
- 3, 3.
( Rom |22y 20y 22
. o axay*
Reaction (g o ete e anterree e, (4
= = —_— 2_
Ry=—{ o+ v)ay&cz} )
Where
=% Plattensteifizkeit” =t
- S - T12a-29)

7 =Poisgon’s ratio -
h=thickness of the slab
and w is the solution of the partial differential equation,

%2‘: + a—i:fy—ﬁ 3332 =ddw :;’T
p: load intensity, being a function of z & y.
The solution of the differential equation (5) is composed of a particular
integral and a complimentary function, which is a solution of the partial
differential equation.

24w Ftw 84w
5 * aa:”ayz'z- ayt =0

In the present discussion the sine or cosine series are adopted as the

particular integral which is a solution of the equation (5), namely

w":% ; an €OS % ................ (8) . ! “
n=1,3,5.... I
for symmetrical loading with the origin at the ¥ | A_. x:
center of the slab. (pt. A) ‘ ¥ £ *_#
Or, . o2
wn=5§ansin% .............. A7 e ]: &
n=12345.... l‘f '

‘with the origin as shown by Fig. 9 (pt. B). Fig. 9.
As the complementary function we have, : ‘
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nra nary nwy
wy _IV _,(_AnCOSh +B1a b smh +6namh 2b = 4 Dy 22T % coshE cos—~2—b——....(8)

Az, By, Cp, Dy, are consta.nts to be determined by boundary conditions.
The notations and equations shown above are the same as are found in
Dr. Nidai’s “ Elastische Platten .

2, The solution of the rectangular slabs simply supported
by four rigid side supports.

The well known solution by Navier which is expressed with double sine
series taking the origin at the corner of the rectangular plate is shown by
eq. (9).

—ZZCmnsm —s e ST 9

el b
This is perhaps the most general solution for simply supported rectangular
slabs. It evidently satisfies the eq. (5) and the boundary condition
Ms=0, w=0 at =0 & x=a.
{Myzﬂ, w=0 a2t y=0 & y=b. ‘ ‘
It i a,pplic'able‘ to any loa&ing » which can be expressed with double
sine series. For the rectangular partial uniform loading in Fig. 10,

mnE | mrn N, nwEy
165 sm—sm a gin —g—sm——b— A
Cmn Y o
i
mn —+ ) e
w P VA
and for a full uniform load for which ¢ . ,Z‘
a b
E—u—z & 7=v="g . =
and the eq. (9) will be Fig. 10.
mw nwy
HID“'—SID—‘
_16p, @ b
w“nw%; mz ey PR R ¢ (1)
52

m,n=1,3,5.... ‘

This is a solution for a simply supported rectangular slab with full
uniform load. . This equation is simple in form but is not fit to get general
idea of the nature of stresses.

It requires comparatively many terms to attain certain aceuracy. For
example, if we take three terms for both m & n the resultant number of

terms will be nine.
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Mr. Iguchi, in his excellent paper in our society’s journal Vol 17. No.
5. modified the Navier's solution into single series. This series is quickly
convergent and is suited for stress caleulation.

3. The solution for rectangular partial uniform loading.

The solufion iz composed of two ’
systems of functions; the one is referred
to the co-ordinate origin at A (z=0,

I
y=0} and the other "to the point b & ///
B (z==¢, y=0). ing i T ‘ .

The loading iz as-

W — "
. 48 -
sumed to be symmetrical with regard & A
to the Y-axis. See Fig. 11, : |
As the solution of the partial dif- , 2~ e ¢
ferential equation (egq. 5), in the range 2 £
c=xZx —¢, referred to the origin A. %
As particular integral Fig. 11,
1 646‘770 nrd onwy : : :
wo= N4 sin Top CO8 g e (11)
' n=1,36.,.. ‘
and as comp]imenta.ry funetion
s nuy nry nEy %
wr Z(Ancosh % -+ Byt o sinh o /M AP 5.9 |
In the range a— cza:?O referred to the origin at B,
mr(a. c) p nwE
=3[ o i 2T oo B2 _ i, 22 |
nm{z—a+ce) na{la—a) n_wg_ 'n-n-r.' .
+ Dy P {ta BT sinh T~ cosh "2 J] ........ (13)
.  op= =1,3,5.... ‘

The equation (13) it a modification of eq (8) and satizfies the diff,
equation -
A4w=0 ‘
and further at the bou.ndary r=a—c¢, that i3 to say on the support, it satisfies
that

?A'.'n=0, Mz=0
a3 referred to the origin at B,

" The constants Any Bay Cn & D, are determined by the conditions of
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continuity at the common boundary at
z=c¢..-& x=0 .
respectively with regard to the two origins of co-ordinates. .

4 Conditions of continuity at the common houndary.

The conditions of continuity are as follows. See also © Elastische Ge-

»

webe,....” page 203.

(1} The deflection of the sides must be equal at the common bhoundary, that is to say,

(wotwdome=(Wye=0.. .covveii i, e eee e (14}
(2) The slope of the two surfaces musi be equal.

5‘312 ﬂ) H(aw“) . (15)

w=g Ts=(}

(8) The bending moment must be equal,

BT azwr) _ 8%y ‘
(_ax2 3 H_( o )M ............................. I (16)

In order that M, be equal, .

9%rs yaﬂwn) 9%y alwx) _(%wr i %wyr
827 By zmc NOWR L By Juee N BzE 0 Byt

But by the condition (I), the second derivatives of y are equal at the
common boundary so that the relation shown by (3) is necessary.

(4) Shear is equal.

Bdwe Bdwr) Bdwn-
o oz :c..lc z=0
fw 2w
Aw=‘-—3-“§"-l" 25
3
But as eq. {15) implies the condition that P !;“U are equal, it will suffice
oYy
that
et 8w _ (8% .
(Bx“ +§53—)x=c— o )M e )

Thus we have got four relations by comparing the n-th terms of- cosine

series. From the above conditions we get the following relations by putting

& [+

=% =R \ : ‘
from (14) Cnba hﬂ"(“ A) +Dg n"(c;_m =an+4f1ncoshr}%8—+3nngﬂ 117ﬁ
from (15) - Cn-— {1 f mr(c:_mtanh m—(r;—ﬁ) }Dn

.3 3 ’ -':-.
=A,?sinh”;—3+{ h@#& "% 15,
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from (16) Cntanhn—ﬂ%_ﬁ +Dn {2tanh (e —f) + nﬂ;mm }

=‘4.-;a005h1-?;1;£+3n {‘7(30311” s} 7""18 ﬂ'rne}

fom (17 =G {o4 25 o 2= B ),

= dnsinh i+ T’n {3 smhnwﬁ i cosh n7l }

T2 2

From the above simultaneous equations we get ”

{mt nh 2% 'mr(o;— & tanh mr((;' =8 -i-2} tn
An= = '
nwfl A oe—= 31
20031:1"—'— {1+tanh—?tanh—2~—}
Qn
Br=+
2¢osh @ { I-t+tanh ?}%@ tanh ﬂ;l@}
antanh ZZ2 {M(“"—m—t h”""‘ }
Ca= + 2 z . {18)
{1+ta.nh ﬁ nh—h—ﬂw{";ﬂe)} ........
a nwi3
—_— " 2
{1+tanh—’r‘§t hM} coszh%
nrl
D'n=—‘ d
nrl na{ce— )
2{1-I—tanh 3 tanh ————= 2 } J
_B4btpy . mmd _a o
= sin == e

If we put =g, %:1, namely for'a full uniform load we get,

{"—w;“ tanh2T% 4 9 }

An=—

2cosh n—’;'ﬁ

a . e E e tre it arreereerenne eee s (19
B 4—1 [ , as
2co'=hmw '

n=1

4 -
645y, (=1 2

,nb.h.i

In=

This is the same as shown in Dr. Nidai’s “ Elastische Platten *.
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5. A very important relation derived from the eq. (12), (13) and (18)

A very important relation is derived from the solutions give in the
preceding article. Look at the coefficients shown by (18). If {o—B>2),

the terms containing o will vanish, for if (—B>2), tanh W’;‘x and
tanh 2T(E=8) 410 very nearly 1.

2
For example,

tanh==0.99627, tanh2r=0.99999, tanh Sr=1.00000

Thus the coefficients become independent of the side ratios o and it
follows naturally that for side ratios «>2+ 48 the stresses reach constant
values only dependent upon 4.

As is shown later in Chapter 3, about the effect of yielding of the side
supports, for long rectangular slabs, the rigidity of the shorter side supports
have little to do with the stresses near the center, so that the stresses given
by the eq. (11) (12), (13) may be applicable to the calculation of two side
support slabs with side ratios larger than 2+ £ or in case (¢—B>2).

- In this connection a full discussion will be found in the articles about
““ effective width 7.

In case oc—B>2, .
nmwf3 3

LI
An=— 2 oy
Zcosh—-—(1+ﬁanh s
1
Ba= +
‘>cosh— (1+-t nh —— mﬁ
) ' | e (20)
—D'n= - 2
nrf
2{1+tanhT} |
taﬂh% {_"'—MW(D;_ B) 2} an 'fn‘.?rﬁ an
Cp= —
2{1+ta.nh”"‘3} {1+tanh””‘6} s "2
C. contains the term o, but by substituting theae values in eq. (13) we
nrl{e—8)

can eliminate and we get by rearranging eq. (13) remembering

that tanhﬂ%ﬂ =1.
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11
_1 nEL nwy nrx - nwy nwy
W= Z{C’m (cosh ) sinh % ) 26 (cosh‘. o7 smh b }eos Top e -2
where
antanh*-;—ﬁ ) m;anB-
Cg =
1+ tanh 222 e 28 Yeosn |
s b e, (22)
an ta,nhn—WH
.Dn,='~ "‘"_—“““'_
2(1+ tanh “i@)

also independent of «. You will see tha,t wi (eq. 21.) practlcally vanishes

at £>2 as well as the stresses due to deﬂectmn, for

X . nwx
cosh op S h % =0

6. Solution for linear loading. (in four side support slabs.)

Paylncr attention to eq. (11), (12) a,nd values (05 B<2) of coefficients A,
& B, shown by eq. (18};

In eq. (18) if 8 be very small,
ﬂmx naloee —2) tanh o — B8) ]

Naee
3 tanh - P : 2
mr.@ d(mro:t hmr_o: 3
_[&ﬂ nwoe ’n.-rro: o ooy 4 " i
= (tanh—2 _+———2 sec’h 3 )
and cosb?lgg=1, ta hnwﬁ m;,ﬂ, N
P ¢ d : .
PEg &5 =R = ' Fig. 12.
_ 64p.sb‘s_l nrd lﬁbz.ismm -
o= nia b Tty By 2
Hence the deflection at a=0, y=0 will be
(w)z=n=l2tzn(1+f1n') and if B=0
¥=
4Pp* . nmy NEE  nwee o e o
N“ n,s 2 {t nh— 3 —sec’h 3 }(..3)
(Mlymg=(t =T 5 L g 272 {t nhE MY o, TR e
= ) 4 .

n=1, 3 b..
We have obtained the same results as shown by Mr. Iguchi 111 our

sometys ]OL'II'IIE.]. Vol. 17. No. 5.
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7. Numerical ekample. -

Problem: Calculate the bending moment at the center of a squaré slab
simply supported on the four sides with a partial square uniform loading as
shown by Fig, 13, where

(3
G‘;—b, c-—d--?

In the range ¢Z=x=-c, eq. (11) and eq. (12) are
applicable, and we get for Me & My at 2=0, y={,

2
Mo 167{3:17 Zl . nad

5 Top 0
% {{1—2)dn’ + 2By —»} ....(25) A —— —
n=1, 3, 5, 7.... A/
e &
My= 16pr-b Z in 'mrd
@ a
x {1+(1—B)An —2an'} ».(26)
An' & By’ are the constants in eq. (18) without Fig. 13.
the term an, namely
{n—zm tanh % — o B) tanh nie—8) +2}
Anf =~ 2 2 2
narf3 nwfd nmoe—B3)
2 cosh Ty {l-i-ta.nh = tanh —a Jl
1
Bnr=
2 cosh —ﬁ{l +tanh T ﬁ tanh W}
here =2=1, B=—=05 —1—05
==l f=p=05 y=p=0
. 1
take ¥=15 for concrete.
» For the values of cosh——b, sinh 222 2b , tanh 7% b efc., see the table in the appendixz, which

was taken from Prof. Hayashi's Funfstel[lge Tafeln der Kreis- und Hyperbelfunktionen ”,

In tkus case,

n EE;E‘_ ta; hw % tanhm;—'e nl o;- B) tanh M(D: £ coslh'nL;3 sm%
1 1.57C8. .. Q.QITL'T 0.78540 0.65579 0.78540 0.65579 1.32461 0.70711
3 4.71240  0,99984 2.35620 0.98219 2.35620 0.98219 5.32275 0.70711
5 7.8540 1.00000 3.92700 0.99922 3.92700 0.99922 25.38686 —0.70711
7 109560 1.00CG0 549780 0.59997 549780 0.99997 122.07758 —0.70711
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__ (15708 % 0.91717 - 0.7854 x 0.65579 -+ 2)

= o .
4 "2x 1.32461(1 +0.85579%) = 0.77223
) _
r - 2 o
Bt T aeiei1F 0.65570) +0.26395

similarly

{A; =—0.21024
By = +0.047912

{_4; =—0.05844 {.4,' =—0015%
By'=+0.00986 | B, =4000205

BY eq. (26) (My)e= will be,
. ! =

18 0.70711 7
o AA1ml N o —_ 7792 _ (12 2 5 27 9 2
3.1418° * 1 ®X(1—-0.9%0.77223 — 0.2 % 0.26395) pod +0.09u_03pob
18 0.70711 : . ]
8.1416° X & ®(1—0.9x0.21024—0.2 < 0.04781) Db? = +0.01088 pb?
16 —0.70711
314167 5 X (1-09%0, 058-14—-0 2% 0.00886) pob®= — 0.00276 p,b?
16 —0.70711
31416 b3 = ! x(T_ —0.9x0. 01935 0.2 x 0,00205) pyb*= — 0.00106 ph*
My= +0.09903 p.b*
Me=—Tis 1146;6:] *x 0.707T11(~ 0.9 % 0.77223+2% 0.26395~0.1) psb® = +0.09746 pob?
3 1146163 ——0 7L (0.9 % 0.21024+2 x 0.04781 ~0.1) P =+0.00262 pib®
16 =0 :0711
srde X g (0.9 0.05844+2 0.00986 ~ 0.1) pib?= —0.00039 p,d?
16 —0.70711
31415 * 7 (T08x0.01585+2x0.00205-01) peb*= ~0.0(0L1 pob?

M= +0.09958 pob®
Mn My 0.099 pobt.

8. Note on Art. 3 in this chapter.

A little more general solution will be obtalned with a modification of

the solution in Art. 8. But the cases of
symmetrical loading are principally dealt
~ with in this paper to keep connection Wlth

the articles later on.

9

=

a
By taking the origin as shown by Fig. ? 5
14 and replacing the cosines in eq. (11), .
(12), (13) with sines, we get ~ 1 _a
1 645, . nal m Y
z ) sin % ——sin gin—— o " .27 ‘
Fig. 14,

n=1,2 3 4...,
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14
w, = Z AnCOSh‘—‘+Bn nm smh'nﬂ sin —*> ...... bt e ey (28)
NS
n=1, 2, 3 4..
1 mr(a c) nrx L mEE
W= ¥a {C’n[ta.nh 5 osh % ginh 25]
+D ””{xz CH_G)[t n-2ea=e) sinh 2 —cosh ™2 |} gin 22 .. .. (29)

With the same values of constants given by eq. (18)

N.B. The loé.dino P will be expressed by Fourier's series,

4p.,zl . 'nn—&' » 'n;rdSi n;-l;;

and remembering that ¥ d—yl‘) gives p, we get the above eguations.

Chapter 3. The effect of yielding of the two opposite

sides, the other two being rigid.

1. Fundamental equations. (Symmetrical loading.)

(Case 1) The ‘'side supports at y=+b are rigid and the deflection

of the sides at z=+¢ is a known function
of v.

(Case 2.) The side supports at y==+b ‘ ',%

are rigid and the rigidity of the side sup- Y /

ports at x=+a is known. The loading is a & //

function of ¥ only.

fa.

(Case 3.) The side support conditions

same a3 in Case 2., and the loading is a _ Fig. 15.

partial rectangular uniform loading.
N. B. (Case 3) is dealt with in Ast. 4.

Case 1, - i5 simpler than Case 2., but it will find little use in the cal-
culation ‘of bridge floors except when some allowance to the strength of the

slabs is necessary in more complicated cases for the vielding of the side

supports. ‘
- As partmular integral we have as before,
zcu=‘—2ancos ﬂ;;‘! e et eee e e e e e b aaay .

n=1, 8, 5,...
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n

-

4 plainl
an= Gii;f“ (—1) ¢ for full uniform load.
618 p o .
an==— o sin %, for partial uniform _loa.d.‘

and for complimentary functions,

1 j T Ty
wy = Nz (Ancosh 26 L+ B % sinh " } e TR

A. & B are determined by the boundary conditions ;

a) (Madeeza==0

b) The yielding of the sides at x=+a is & known function of y or
Zi’i cos ’;727 if expressed with cosine series.

,.{31})

As the condition (a), (b) we get by putting ?:oc,

a- y)cosh—Aﬂ,+{"cosh——+(1 v)—m B 7% an—-D(Dn-—O ceeanea(32)

An+B.q,M—a'sinhM=‘lIn e (38)

nwes
an-tcosh

By SOlVlIlO’ the simultaneous equations (32), (88) with regard to 4, & B,

{201 ,,)“’"" T Ly P L hm}
2 2
An= e
9
Zeosh =y e (34)
B, _n=(1=0)%

2coshﬂ%
Case 2. The rigidity of the side supports is known. Let us call the

ferm K= L;i; ‘side support rigidity ”

Here,

F;: modulous of elasﬁcify of the supporting beam.
I;: moment of inertia of the supporting beam.
Ey: modulous of elasticity of concrete.

h: depth of the slab.

v: Poisson's ratio.

This value K is independent of units, and the effect of yielding is
expressible in terms of K.

Using the eguations (30), (31), as in case 1, and for the first boundary
conditions we have, (Mm).,,:iﬁzo,

(l—y)cosh % dnt {2cosh%-+(1 11)—“51 hf——]Bn—mn 0 ........(35)

For the second bounda,ry conditions we have;
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16
The reaction of the slab af x=+a s equal to the external loed fo the

supporting beam.

Let f{y) be the yielding of the sides at z= +a, then as the external load

4
to the supporting beam we have, -—EsIsd&f (’if on one hand and on the other;
Y

the reaction for the slab -

3:_’(11’0 +wy) _ 8“(wn+wﬂ }
_N{ o +{2—w) 3I3y2

These two values must be equal.

Here A =Z{An cosh 2% 4 By 2 sinhw+an} cos 22l
3 2 2 2 25

We get the following relation by equating the n-th term,

s p Toree BT m}
Ji(l z)sinh 3 +_—26N cosh P An

., Mo nEe nwoe | wiw Bels n'n'ot]_
+Bn{ (1+p)smh—2 +(1—2) 3 cosh—2 + e sinh 2

nr Bl _
PN Y ¢ 15 ]
By solving (35), (86) with regard to 4., Bx, and putting K :%i we get,
n2rin . . TNTOE o nw
27 > K—D(I'l-il)} Sth'!'Clm. 2m:—K'+v(1—-v)—-;,—~} co! h—2—
An= , =
2n7rKcoszh7w—°e+(1—y)[3 +z.v)sinhmr—°‘f.:os}:lnrﬂ——(l-—zz)"’m L
: 2 2 2 2
e (3T
an {z;(l— y)sinhmr—oi+mrKcosh M}
2 2
Br=+ Nemoe b nwe nwee
2nw K cos’h 5 +(1—y)(3+zr)sinhTcoshT—(l—v)z—;—

2. Solution for slabs with four rigid sides or with two rigid
and two unsupported sides as the extreme cases for
the solutions given in Art. 1, in this chapter.

Look at (37)

2 +mrce tanh nwte

. 2 2
Illm An=~ o n
e P coshTw

HfﬂBn-"—‘l-_—“—l"'—'

s
2cosh 2

an

If the rigidity K tends to

infinity, the constants A. and B, will take
the same values as are shown

in the solutions for rigid four side supports.
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See eq. (19) or “ Ilastische Flatien ”.
Also for K=0,

(1-2) ”’““cosh"ﬂ—a +v)sinh “”—"‘

n=—
“ l—v oL

(3+2)sinh —fcosh——'—(l v)——

324
P an
(34+2) anhTCO hm—(l—r)ﬂwm

v smh

Br=+

Constants obtained for the rigidity K'=0 are for slabs with two unsup-
ported sides. This will be checked by independent calculation as follows.
(Check for the values given by eqg. (38)).

From the two equations (30) and (31) we get for 4, & Bn. the' following
two relations with the boundary conditions;

a) Mz=0 at r=a,
b} Re=0 ab a=a.

Thus,
(l—y)cosh An+{2cosh—--+(1 z:)—smh }Bn—mn-—o e eee. o o(39)
(1— v)smh An+{ (1+y)51nh—+(1——:;)—coshn”m}Bn=0 ...... (40)
and we get
(I—y)ﬂcoshw—(l+v}sinhw—m-
_A_n: —— o Qn
(3-!-;») sinh 2%% ¢osh 2 -(1— v) L“—
_ vsinhn”; tn
Br=+

1=

This is exactly the same as eq. (38).

3. The extent of the effect of the side support yielding
for full uniform load in bridge floors.
As is shown in Art. 2. in -this chapter, the effect, of yielding sides is
dependent on the sidé support rigidity K. ‘
Some examples of executed bridge floors are shown by the following

examples with the corresponding values of K.
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Ex. 1. (A cross beam of a deck plate girder.)

2b=130cm, h=18em, I;=6C60cm*(I-Beam 10’ x5 @ 20.%99)

E?
T =15, p=01, N=E§(1—02).
T= w_lo

190x+—(1 —01%

Ex. 2. (A stringer of a truss bridge.)

2b=415cm, h=15cm, IL=13100cm?*(1-Beam 12" @ 44.%02)

= 15x 1? 100 2168

415x—-(1 1%

Ex. 3. (Same as above.)
2b=570em, h=15cm, I;=30000cm? and K =27

Bending moment at 2=0, y=0 will be as before,

=1

16p8°% 5 1 R -t
My =R 2 {1+~ 0)de 20 Bl (1) 2 [
16p.b? : =
=B F L eoBs-n -0

by n N

Here 4. & B,/ are the constants given by eq. (37) without the term a,.
Max. moment in the supporting beam is
&% flan _ el 16 ., L= nLoa
ﬂ e N P Pob* Z—( 1)z (1+_4;z GOSh‘_+Bn nh
y=0
_BIse
TN =P

g)ﬁ-lﬁ' =side support rigidity. Fa

EsL;

LT (1 A cosh 22 4 B P sinh ) LD

The change of stresses due to support | i ]
yielding for a square slab under full uniform 1
load p, is tabulated below. You will find con-

giderable change in stresses as well as in deflec-

tions. (The supports at z= +o are yielding.) a @

See also PL 8 for change of bending mo-

ment due to various values of K. : %
Fig. 16.
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Side supt. rigidity K= K=1
(rigid) (yielding)
B.M. at center of slab (Mse-0,y=0. 0.15% ;b 0.129 pyb* Note
. ofe.
{(Myle=v,y=0. 0.159 pgd? 0.258 peb® SBide length=2%.
4
Deflection at center of slab 0.0657 %P— 0.1044 p—\"),“
- i
Deflection of support 0 G.0359 ¥
Reactior of slab 0.582 ped 0.59 2¢b
Max. B. M. in supporting beam .40 peb? .29 p.b°

Note. In ordinary four side support slabs in bridge fiocrs the side support rigidity
KE=1.

4. The solution for partial rectangular uniform load.
(Case 8 in Art. 1.)

In this case the rigidity of the side supports are known.

The effect of yielding at s==¢ will be added to the solution for rigid
side supports shown in Art. 8, Chapt. 2

By eq. (11\ 12y, (18), in the range ¢Z=z== ~-¢, origin at A.

64t Py mrd nEd s iy
s O gh 2b

AL N nwy
uvI_vz(An cosh 2 b L1 B, T o nh "b) 5755

and in the range a¢—¢=x=0 with origin at B.

1 { na{g—0c) L oo DEE
""LII=1\?§[C“ lta.nh 25 h-ﬁ h-E’b_}
far{z—ate) [ rala—c) . AL sk L ATy
+D»n % {tank o7 sinh % osh 2 26 }] LTS
The above three equations are the solu-
tions for rigid side support slabs, for which I
the constants 4,, B, Cs, D, are given by eq. P | 5 T
(19) O . -
Now let us =add one more equation ¢ s "
namely. A
‘With origin at A in the range e =a=—0
1
Y=y Z(E“COSh Fig. 17.
+Fn L sin h— cosm RPN 29

b 2b 2b
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By adding the both solutions we get the solution for yielding supports.
In the range ¢Z=z= —e, with origin at A

Gdh nod T, )
tL°=37+; 1513"51 :b s"—‘ri .......................................... {(11)

1
wptw= Z {(

In the range a—c=x=0, eq. (42) will be, by trauslating the axis of
co-ordinates from A 1o B.

. N ‘ niy,
) asinh "2 | os 2L

mor+e) | a( e
{.T'n cosh "—ﬂ—nrw -1-1711,%7( v o) sinh n'r('? o) } 05 ot
; 2b B 26

The resultant solutlon in the range a—02120 will be, wg+wn’ with

wyy' = N

origin at B.
E, & F, are determined by the two boundary conditions ;
{a) M,=0 at the support.
(b) Renction at support is equal to the external load to the sap-
porting beam.
Condition (2) will be rendered by

En(l-—y)coshn—?i+F;z{9cosh——+(1 v) % sin h——-} =0 ..... hereraan (45)

Other terms vanish as they are fixed by the same conditions. Condition
(b) will b,

N[ E el ar_]{(un)&- camo g a} = Bli (wm)x o

We got from (45) and from condition (b) the following two relations.

{2+(1—-u)—tmh?——’;°i} .................................... (46)
— ) —
{1 v).;:”((ii-;))l)u} [_W;w_ (1 ;ﬁa+[3+v)8inhm§fJFn
cosh ————= cosh——
2 4
=—‘f’rK4hm—°’ B et e e e e e e et e e (A7)
- EJd, . < a
here K=-—="% gide support rigidity.
BN PP glaity
Thus the constants are,
{1=2)0a—11 +p1 D0}
cosh T - B
v
Fn=— nwee . (I—2) : e Snw K 2
‘ T T pg HB+#) ST 4 Ci e (48)
% cosh T 1= -
2
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T =
L= =

Fa
ﬁ{?-i—(l—zz)w;u mnhmroz} J

Uy, Dy are given by eq. (18).

5. Numerical exambple.

Ez. Caleulate the bending moment at the center of a square slab
140cm x 140em x 15em of which the two opposite sides, are supported by the

h l

- I3
§ i |
S f
N i :
r T ]
Mz
IR e 77 E :
N o / [ " b
Lo .‘//é ﬂ/// ! - =
5 ! R I it == T
» i . Pyl B
' f | | s5p0'F 5By \:\2 A3
. : 2 aa g FEE Y - R
s [ ! ',..._......f..:?.{.lj Es e ;_"L_, £
y F 1 — =
Zog R R 20 ¥

/.? f’cm ,“A'?J;‘I:F Z’chﬁf,

Fig. 138,

main girders and the other two by the I-Beams 200x100@25.95kg. Take
as live load one wheel of a 12ton motor truck as specified by the Depart-
ment of Home Affairs. The depth of swrface filling of the slab is 15cm.

As is stated in previous chapters, the sides supported by the main girders are considered
rigid. The distributed area of one wheel will be T0cm x 50cm.
a) Bide support rigidity K (for caleulation of dead load stresses take J—-;: as side support
rigidity, if we take into account the effect of the adjoining span.

5% 2175
Side support rigidity K= 1rx3175 =084

= % 140 1541~ ¢.1%)

Li=2175cm* »=01, 2b=140cm, k=15e¢m
b) Bending mt. at x=0, y=0.
By eq. (11), (43), (44}
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]

SlIln d
6 “b
(Ma)ewo, 3= u—aI‘ “b Z {(1=2)( 4 + Ba)+2ABs + Fa' )=}

b 49)

nwr
168,02 2b
(4 )c--i] g =" ??‘o ZT{1'?'(1—21)‘(:1)1.'+E.-z,’)—*2U(Bn"|‘Fﬂ')}J
ko i
A9, Ba', Ed', F' are the constants in eq. (18), (48), without the term an.
For practical purpose only the first terms will give sufficiently accurate values. In this
case three terms wese taken.
By eq. (18), (48), we get,
{the values 4" & B.' are fourd in page 13)

A =—077223 { B, =0.26395
{ A =-0.21024 { B, =094781
A =—0.03844 B, =0.000886
By eq. (18),
P L 7,
L A1+0.65579% 022929
_ . 088219 oo
£=05 D)= %2(1-1-(}.98219”) = —{.24995
0.89922
e — T __0.2560
D = = S ogeaazy — 0250
alse by eq. (I8}
1 3 s
Cn. -—‘“.D [Mtﬂnh?'grﬁ‘+2]—8nuﬂrﬁ
' =0.40488
wl Oy =1.06718
C,'=1.48160
By eq. {48) we get
F,\'=0.08022 ) { I =—0.02187
for K=0.84 { B, =0.00139 1 F, = —0.00020
By =0.00003 Iy =—0,00000
If K=c0, Bx & Fy' are zero.
B =0.25592 { _Fl’= —0.07986
If K=0 E'=0,00338 = ~{.00135
v =0.00014 _F:. = —-0.00002

And we get (Mels=0, y=0 & (Mylz=p, y=0 by eq. (49
Let us compare the results obtained for K =0 {wmsupported.} K =".54 (yielding) and K=cc
(rigid), respestively
Mz=0.05119 pb?
My=01538¢ pb?
Mo=0.06835 p,'?
My=0.10544 pob?

TFor K=0

JE—

For K=(.84 {
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Me=0.07595 pgb?

My=0.08477 pb® ,
Due to the yielding of the supports (17,)(K =20) is imcreased by 24%, while () (E =20} is
decreased by 10%.

For E=oo <i

Chapter 4. On the * effective width”’ and some .
important problems connected with it.

1. General naturs of the problem.

In the preceding chapter I have shown that the two side support slabs
can be treated as special case of slabs with yvielding sides, the rigidity of
the side support being zero. Also I have mentioned in Chapter 2, Art. 5
that the solution for four rigid side supports ave applicable fo two side
support slabs in case (¢—B=9) or ¢ —e¢ exceeds 2b. Eere m:%, B:% %

_d ‘

g =

I')The word “effective width” involves some ambiguity as to its definition,
but let us consider it as a simple means of caleulating stresses in two side
support slabs. The formulas for effective widths specified by the Dept. of
Home Affairs, (see Appendix) perhaps have the same origin as those found
in p. 358 of Hool's “ Reinforced concrete construction 7., Vol. IIT.

In this book, according to Mr. Slater, as the limit for application of the
formula given there, the total width of the slab must be greater than twice
the span.

This formula agrees well with the theoretical resalts within certain limits.
The limitation is, rigorously speaking, («—@2)=2 instead of «=2 as was
shown by Mr. Slater. See PI. 8.

As far as I know, nothing particular is specified in ordinary regulations
as to “distributing bars”. In PL 2 the ratio M, : M, at =0, y=0 is shown,
in ease (¢—8>2) obtained from the formula given in Art. 5., Chapter 2.

According to this diagram, if §=20.2 which is not at all seldom in bridge
floors especially in slab bridges, the ratio reaches *0% . TPortanately, in
bridge floors the depth of slabs are governed by dead load for such con-
centrated loadings and much steel is not nceded ag distributing bars.

It should be born in mind that, if we have heavy live load as compared
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with the dead load, due attention should be paid to distributing bars.

Also a small amount of negative bending moment occurs in the direc-
tion of distributing bars, and sometimes a certain amount of reinforcement
may be necessary in the upper side of the slab near the center of the span.
See PL. 10,

In designing slab bridges the effect of the adjoining two wheels which
can not be considered as a single rectangular loading should be considersd.
The method of caleulation will be shown in the following articles.

Some special caleulation is neéessary when there is possibility of the load
coming near the unsupported sides. The limitations added to the formulas
for effective width found in the specification of the Dept. of Home Affairs
show fairly good resulis for slabs with «—5<%2 if compared with the
theoretica! results. See Pl &, also Azt 9, Chapt. 2

2. Caleulation of the {wo side support slabs

in case (x—B>2

The solution given in Art. 5, Chapter 2 applies to this case.
In the range c=a= -, J

R . g
origin at A. ;
i : I
1 By, | nrd . ¢! | Py
Tt D sin T gos Y a1y 7! L e /i |
T nbx® 2} 24 TR w7z . P
! 2~ o
n=l, 3, 5.... r ‘ £+ ’
1y 1
&< e a-e
.) W= ,:\’ Z(ﬂ.uco " L e
_____ Y 2
+ D" Lb Y sinh 2 5 )cos 2 Z =a
L n=13 5... ....1%3 =4
&S
and in the range ¢—c¢=x=0, with the Tg = l~3
origin at B. Plg, 19,
1 { ( NIy ) ( nNEY ., . nww nwl .
= 103k h— D sh—=—sinh —/— jeos—= ....(%1
Wi =y & {Crolcosh oy T sin = 2 o b (1)
3
—_— 124
5 2 }
Au—“ nw .ﬂ

*c>s]17rL i (1+t nh—

1
200‘3h—~ (1+ta.nh i

Br:,=+ ;8
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antanh E;LB m:%’g
C,. = - - 2
1+tanh @ 2(1 +tanh %) cos’h m;—ﬁ
99
h nr B ........................ (22
antan 64bp, . memd
Dy=- ? —

an= 8in
T ER s BTy
2(1+tanh "—’—‘,ﬁ) " ’

The above solution is for four rigid side supports, but from the reasons
that the term

(cosh b‘ —smh-;g—

In 2wy soon vanishes for the wvalues ?>2 and that the stresses npear the

center of the slab are little influenced by the side support rigidity, they are
applicable to two side support slabs in case «—8>2. Refer to the table of
hyperbolic functions,

The bending moment at =0, y=0 will be as before

sin '??"'ﬂ

16p,h° B
J‘!fz:=%}“z b {(1‘11)_...1: T"-Bn, _ZJ]'

sin 'mrrf

W mpna Z

{14{L-0)dn' - 25 By'} l
3. Comparison of the prevalent formula for “eSoctive width
with the theorstieal results in case (oe—B9).

In PL 8. the moment ratio, that is to say, the ratic of the theoretical
bending moment to the simple beam moment

Pubg(? _'}'?") s (‘J’ ==

s shown by the diagram. The moment ratio obtained from ihe prevalent
formula will be,

— =B f_g See Fig. 19.
2 2 b
=b+e —+8
3 3 o
This formula without the limitations as specified HL[” ”LW ’
by the Dept. of Home Affairs agrees very well with S =
the theoretical values within ordinary limit of load

concentration in bridge floors. See Pl 8. The theo- Fig. 20.
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retical moment ratio is in this case within the range denoted by the two thick

lines. The thin line denotes.
J<]

2
3+ﬁ

I wonder whether the limitation “e¢=2m ™ is necessary in this case in
the common formula. This limitation is foo much on the safe side. It may
be that this limitation is provided for the possibility of the load coming
near the unsupported sides (see Fig. 4, 7.), and still it seems to me unadvis-
able to construct the most part of the floor over strong.

It will be more economical and free from stress ambiguities to support
comparatively long elabs as in truss bridge fieors op the four sides instead
of the two. If the load is not expected on the unsupported sides, as in the

case of a slab bridge with foot paths and carriage ways, bending moment

may be caleulated with the moment ratio or with the theoretical

2.8
o]
formulas. Ses Pl 3, 4.
. (Explanation as to the deduetion of the momeni ratio from the prevalenmt

formula),

Let us first consider the general results obtained from the formula given
in Article 29 of the specification of the Deépt. of Home Affairs.
According to Art. 29, the effoctive width ¢ will be

£
)
e=§(2b)+2c, but e=lm, =2z

. |
. A =/ {
The moment ratio is \ iy
e . e g2
2 e b / \
e 2 ES g
3 b+e 3 - b
. [ : [13 : 2
If we denote Y with 8 & " with e, the -t
. . AN
ratio will be NV /
3 . - B -
e (i) ¥ l A
__I_ﬁ N '
8 % ]
also £
=% or gﬂ{-,ﬁ“::tx .......... Ceveaan (i) Fig. 21
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. The distributed area of one wheel of a 12ton motor truck, (see Fig. 18.)
with the depth of filling 15em. will be, 70x50 cm. The mean depth of
filling consisting of wooden block pavement is usually 15 cm.

As is specified, the max. effective width is 2 m. and the limiling moment

70, 50
200 200 °

We may express Art. 29 as follows; the moment ratio, or

ratio will be

the moment caleulated with effsctive width
simple beam moment (without taking eff. w.)

the ratio,

will be denoted by

70 50
218 g?o-b— or 'Ea
3 (R (iii)
0
Ky +R=c

If the above relation is not satisfled simultaneously, the moment ratio
will be simply,

£
U‘ .
but not less than 70 or 50 .
200 200
For square slabs the relation (ili) will be
2
< +6=1
3 1 2
A %.50 T=R=y
%+_B 200

2 .
We see that the formula is effective in the range 1§ =F8z="" and outside

@w

50

5 or 0.25. Bee Pl 5.

it the moment ratio will be 8 (et==1), but not less than

4

4, Mumerical Examples.

Ex. 1. (Stress due o a single wheel.)

Calculate the bending moment near the center of a long slab as shown
by Fig. 22., for one wheel of a 12ton motor truck. The depth of filling is
15cem. The long sides are assumed to be rigid and their length is larger

than 8 m. The short sides are either supported or unsupported.
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If 2a>8m, (x-8)>2 and we can use the golntion given in Art. 2. in thig chapter. The
stress near the center is independent of the rigidity
of the short sides.

a) Dead load intensity.

tfm2

Woaden blocks 7.5em thick =1x0.075 =0.075
Cushion mortar Sem »  =L7x003 =0.051
Filling concrete 45e¢m ,, =22x 0.045=0.099

PO
S
|

) @ & <
Reinforced cone. slab 16em ,, =2.4%0.16 =0.384
C.603 s >37
b) DLive load intensity. G
The weight of one wheel =45 tons . g
Coeficient of impact =302%. ,‘_‘_".il_,l-.l.i_!._:_i-l h&;\_'?
bt a2l fe e

. . . 45x13 i 7 7 d

Live load 1ntensxty=m=16.; t/m ! adadr | ~1

¢) Live lrad moment at x=0, y=0,
By eq. (60) and (20), As v=08 & B=04,

n il 2 cosh nrg tanh nmfy gin 7. |
2 2 o 2 I 7
/ // 2ol
0.62832  1.20378  0.53687  0.80874 ] LA %
1.88456 3.86909 0.95493 0.20943 W T e b
31416 1159195  0.99827 -1 Pig. 22,
: 24.0.62827
0= — =—0.701858
A= = o Saareq 1 05s667, 70183
1
T = -+0.26682
B = i Stare (1 03s6er) — + 02608
Similarly,

[Aa" = —0.20495 (A" = 011110
133’ =<+0.07591 ‘135’ = --0.02]61
v=01

(M0, w=0

18 peh?  0.80874

Saa1e T 5 (L—0.9x070185-02x0.26682)=  0.13164 b’
;612"1235 x 2 gf & (1-09x0.20403 - 0.2 0.07591)=  0.00425 p,b?
16 bg 1 falnd a
3.1216:. %2 (1-0.9x 011110~ 0.2 % 0.02161) =~ 0.00570 peb*

013219 p.b*
(My)s=n, y=n according to the Dept. L A, formula will be

n?
2

B =2 .74
) 5 = 0.133 3,72
3

simple beam momentx— A b? (? -

&

—+8
]

The difference is about 209
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Similarly
(Mg, =0
Pl % 041731 (- 0.63120+0.53364 - 0.1)=  0.08246 p.&?
Pob? % 0.00561.( — 0.265444+ 0.15180 - 0.1)=  0.00126 p, I
— pob? % 0.00413( - 0.09%93 + 0.01230-- 0.1} = ~ 0.00006 p,b*

0-CR366 ol
Thus for v=0.1

[(MHyde=0, y=0=0132p:b?

(i ae0, p=0=0.083 pob?
Live load moment plus impict=0.132x 16.7 x 0.625°=0.5C0 tm
Dead load moment =0.50%0.60x 06257 =0,117

— (977 tm
. M v -
Required I/ = 0.375}/ —il{- =08751977T=11.7 cm (¢»=1 200 kg/cm®, oo =45kg/om?). Take h=15cm.

Amount of main reinforeement.

M ‘
fz=0-2531/"{bi=7.91 em?® (13mm rods at 15¢m spe.)

Amount of distributing bars.
o Bx=0083x%16.7 % 0.625=0.54 tm.
= . 54000
S =439 (13mm rods at 25em spe)
1200x11.7% ry
You s2e that the common practice to use 9mm rods at large spacings is insufBeient to
develop full strength of the sliab.
d) Max, negative mt. in the direction of Xraxmis,

In the second range with the orizgin at I3, negative Mo will be caleulated with the first

term only.
160% . wd
(‘}[m)gf:lj:"““%& S %i{[*’l—y)ﬂ’m’-i-ﬂDl'] I %
k] 20 T
(- ,_1’1} T inhTE z é 7. B x
(1-2)0, % (cosh 5 sinh %) = % /;u .
from eq. (20) for B=0.4 we gat (i’ =027814, D)/ = —0.1788) |
and as y=06
(Ml —0=pyb? x 0.51602 . gL
97— o TE o FE g T i
x 0.50874 (0.10.37 0.16092 % )(cosn o8 sinh o Fig. 23,
(‘Z{ﬂf,)ﬂ:ﬂ a
put -——;;—:0 we geb F=1.06

The max. negative mt. oceurs at a==6 from the origin B in this case.
The max. negative mt. = —0.0127 pl°
Max. negative mt. along X-axis will be
—~16.7 x 0.0127 x 0.625°=0.083 tm.
This amount is very small and need not be considered.
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Ez, 2. (Stress due t» a bair of wheels.)
Calculate the max. bending mt. for a pair of the front whesls of a 12 ton
and its width is more

motor truck. The span of the slab bridge is 8.5 m
than 9.5m. The depth of filling is 15 em.

In this cage the effects of the two wheals 1.8m apart are superposed.
In order that the stresses are independent of the yielding of the short sides, each load
Sea Tig, 2%,

must have a clearance from the unsupported sides at least equal to the span.

g | ¥
{ fﬁw | f
3 £ )
e e | Lo &
8 SR R i
| a6 =l
! | | ol : I
L_ / s o | J h_,_uq,_ﬁf,__f
— H' ":
e Eﬂﬂ/ﬂ gﬂfmt/
Fig. 24 Fig 25, '
(Siress dues to one wheel)
From eq. (12} and (?1) we get (Meduo, My)yeo, taking the Arst torm only,
In the domain (I) with the origin at A,
_ 168, ., wd . A T o, 'ﬂ.?:}
(Mx)y=0= et L—JE[(I—y)AI cosh?b—+ B’ {L’coshgg-{—(l— y)gsmh-‘%— —-v]
.......... (51}
In the domain (II) with origin at B,
1r_r,-_

65° p,

' 1 . T o, , S e
(Ma)yap=s = smi.’_b[{(l_”)(’” +2D' 1 —(1—}D, E](cosh 2 —zinh %

. (57

amrara ey

Bimilarly for (if)y-y

. wd , T TE T TR
Sm‘;;l;-[l-f—(l—p);h coshég-i-Bl' {aay cosh%ﬂl—z;)%smh o }]

) 1667 p,
(Ayyeo= pr
........... {53)
] }Gbﬂpn .l . , , T s . P
(ody=0= T S0y {(1—-:;)6’10 =2 D' —~{1—)D, LTET} (cosh%—smh%)
e e (54)

(£=02, =015

Thus we get by 20) and 2
{ 4, =~-0.84527, { o' =0.1:4984,
By =0.36526, Dy =-0.11659

And in the domain (I} with the origin at A,
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5 o T o T
{M)y=0="0.12065 pub-( —0.05022 cosh -+ 082373 -

. T 3

Slnh%— 0.1) [
in the domain (II) ' [ e (a)
J

a - son2 q T T ginh X
{( M)y =0=0.12065 pob ( 0.09877 1+ 0.16493 ) (cosh %% —sinh mi.%_)
in the domain (I)

(My)y-0=0.12065 pnaﬂ(l-o.sssrscosh%+0.32873’7:%sinh =)
in the domain (I} ke (b)

(3dy-0="0.12085 pob? {0‘15773 +0.10498 %} (cosh % ~sinh %)

The curves (a) (b) are plotted according to the values of %— for each wheel and added to-
gether. See Pl 9.
Max. (My) for one wheel is (.020 p;0° If the effect of the adjoining wheel i8 considered it
becomes 0.031 p;b%, about 55% increase! .
Max. (Mz) is on the otherhand hardly affected by the adjacent load, ard is decreased by
7Y%.
Reguired depth of the slab.
Max. (My)y-0=0.03021 peb?=0.03021 x 16.7 x 1.757=1.55 trn
L1l m=155tm (live load intensity 16.7 t/m?%)
d.l m.=1.53 (dead load intensity I4/m?)
3.8
Req. B =0.441 ~'3080=24.4 cm

* oe=1200 kg/em?®, op=40kglem?

Amount of main reinforcement,
S:=0.298 »/3060=12.85 cm*=15mm rods at 14 ¢m Spacing.
Amount of distribution bars,
Mazx. (Ma)y-0=0.01457 p.b*
=16.7 x 0.01457 x 1.75°=0.74 tm.
Reqg. amount of steel
=3.04em?
lem rods at 25 ¢m spacing=3.14cm?
See Pl. 9. '

5. Two side support slabs in case {ee—B<2)

As the two side support slabs are nothing but the slabs with yielding
side supports in their special cases, nothing will be stated here as to the
method of caleulation.

Let us compare again the theoretical results with those obtained from.
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the specification of the Dept. H. A,

One wheel of a 12ton motor truck with the distributed load area 70 em
x50 cm is considered. Moment ratio aceording to the specification iz denoted
by the thick lines for side ratios «=0.5, 1, 1.5, 2 ete. (See PL 8.)

Thé curve 1 denotes the theoretical moment ratio for o=1. It agrees
well with the thick line except the horizonsal part involving the limitation
that “ ¢=2m .

The same will be snid to the curves 2 & 8. The curve 2 is for «=15

and the curve 3 is for the case (¢— B=2), that is to say for long slabs.

6. Two side support slabs with rectangular uniform load on the
unsupported side. (a—B>1).

It is needless to say that the case ‘(oe—',8< 1) should be considered, hut
this case is rather complicated, and as we may expect that the effect of the
exireme position of the load will not be so great as in case (a—g8>1), the
case (¢—A<1) was omitted to avoid complication.

The sclution will be given in Art. 8.

7. The solution for slabs with four rigid side supports with ex-
treme load pesition as basis of the calculation in the following
articles.

Taking the origins at A and B, in the domains I & II respectively, we

have,

In the domain I, origin at A. l

1 nAY . 4
wI—N;ancos 7 Y ¢ 153 7 L
-—I\.—\ 4—"—-ﬁ
n=1,3,3.... |
1 1 nawy |, . nwr nar AFZ=718
"”n=m—r§ {? an(g—b-smh W—-ﬂcosh :b ) P - B
y . nry m nry nwy - -
+ .Jnsmhﬁ-—?b + Ba o cosh—*zb }cos o e .(56) z 2Aa-2LC
, .. Fig. 25.
In the domain II, origin at B.
1 R . 2
wo = Z [C-'n {tanh nalee ~ F)cosh Y o Sinh W:n }
PA Ty 2b 2h
+ Da("EE — ntor—8y) {tamhwnter— Bysink P - cosh "%} Joos ML . (57
2p ‘ 25 2b R

The above three equations are the solutions for four rigid side supports with
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extreme load position.

With origin at A, w4 wy evidently satisfies the condition,
(wr+1un):0

82 at z=0.
and 5;5<wf+ wH)=0

And with origin at B. g satisfes the same conditions at the boundary
r=20— 2,

The constants A, B, Ci D, are o be determined by the econdition of
continuity at the common boundary of the two surfaces.

By equating the n-th terms of the series according to the conditions of
continuity we get.

a) Qeytwg) o =lugneeo

1
5 @n {73 sinhnx B+ 21 —coshnw@)} + Ansinh nmB + By n#S3 coshnm3

=Catanhamlor~ B+ Dunm(or—8) vovrvimnre e (5%)
Juwy | Bw dwr
b T LW = It
) ( e ? g8.c )xnac oz ):n-=0
-%— an{n®3 coshnxB8—sinhnr3} + -, cosh nn+ Ba(cosh nrB+nx3 sihh nxd)
= —Cn,—.D-n{1+mr(oe— Atanhnwlec—~B} ovei i K3t
Ezwx Mo agwm
[+ =
) (3x2 * Fis ):a=z 8z ).m-U
1 . . .
- @n nrSsinhnaf8+ dnsinh erg4- B.(2sinh na @3-+ nw8 coshne)
=Untanhnr(e—8) + Da{2tanh nu(e - B)+nn(oe—~ BT .. ... ......(60)
asz 3“wn B“wm
d . =
) au? + axt )J:=2: ( ax3 ):c=ﬂ

—.1,— an{sinh nxB+n78 coshnwf8) + i, coshnwf+ Ba(3 cosh naS +nx8sinh naf)
i = ~Co— {3 +naler~ B tanh nm{ec~8)} Dy
By solving the above equations with regard to A,, B, Ca, D and putting
(e —B>1), we get

. (naB+2Yen ta
" Acoshmeg@+sinhargy * O

B _ thn, —ﬂl
* 7 2AcoshnmB+sinhnmB) 2

Cu= —nwee Dutagfl - cosh nw @)+ Ansinh nag

Do — {cosh naB—1g» _G4ép, sin nwd
- 2coshne3+sinhn=@)’ Gn= nhad T 2p




. 1016 Important Problems in the Design of Reinforced Conerete Floors. 34

8. Stress near the yielding side support for the loading given in
the preceding articles.

To calculate the effect of the side support yielding at 2=0 in the domain
I, one more equation is necessary which is as follows.

Also it must be remembered that the solution given by eq. (55) & (56),
(57) was obtained as basis of caleulation of stresses near the yielding support
of & long slab, of which the rigidity of the opposite side is independent of

the siresses above mentioned (@—8>1).
4As an equation to be added to eq. (55), {36), (57), in the range 2u=zr=0

1
?‘UIV = E‘: IZ Eu (1 nwE

(63} satisfes the condmon, (M};)znu=0.

nw
cosh - ob)o Tp creeeneeee (63

Also in case (e¢—p3>1) this equation rapidly vanishes with increasing

values of x, and it satisfies

_ ngnr) _ - . . R
(W) ng =0 327 Jyon 0 I0¢ slabs with side ratios w—8>1

The eq. (63) together with eq. (565), (56), (57) can be used for the caleulation
of stresses mear the yielding side of a long slab.
- To determine X, in eq. (83) we put the following boundary condition,

a* 3t d?
PYCRACinld bewryer )(w + ), U+( L+ (2~ i3 ay:,)(wn,)mmo:Es.n de(wn,)_M
from which we get

Em=(l_”m”‘_(1+") .................................................. (62)

(84w )Jr"“rIL

K'=side support rigidity.
in the domain (I) ,
12 J . .
(%) _16md s T A DEN e (55)
TS

w=0, =0 ¥
' n=1,8 5....

(1=2)An'—(142)Ry
nn K
-

Bl =

(3+v)+

A & B, are the const. Wlthout the term ¢, given in eq. (62).

The bending mt. in the supporting beam at y==0 is,
321;3?;,. 1. pnd 2
,,:.3

Support mb.=XK
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9. .Numerical éxample.

Ez. In the two side support slab calculate the mak. bending mt. at the
unsupported side, when the rectangular uniform load is on it. The load and
the dimension of the slab are exactly the same as in Ex. 1, Chapt.” 4. (p. 27)

¢

=_f;—=0'4’ -y:E;LO.G & K=0 (unsupported.) s
: £ ¥
By eq. (62), (64), (65) 3 7§. —
A =053674 (B =—035775 | E,<'=0328277 N N
{ Ay =0.93350 { By’ =—048848 { E,'=044434

¢l  zZa -2¢C

As"=0.99225 By =—0.49907 Ey' =0.46516
By eq. {65) . Fig. 27.
(l]ﬂ;)m:ﬂ, y=0=0.245pobg.

The live load mb. shows 852 increase as compared with the results in Ex. 1, Ghapf. 4r
In the present example,

=167 t/m?, b=0.625
L1 m. =16.7 x 0.245 x 0.625%=1.61 tm
d.1.10.=0.60x 0.50% 0.6252 =0.12

1.73
k' =0.375+1730=15.6 cm
h=18cm ¥ used.

In this slab with rectangular load moving along the Iong side the fequireé[_
depth are 18em & 15cm in the range (II) & (I) respectively. See Fig, 28.
10. Note on Art. 8, Chapt. 4.

The moment ratio at the unsupported side (see Fig. 28), that is to say the
ratio of the theoretical moment to the simple

|
beam mt. will be denoted approximately by | , ' :
% (' | (7 _Z (r)
21+#)E RS w |
For, the theordtical moment is shown : 24 L zf |
by eq. (65) and the simple beam moment is Fig. 28.

oy X \_16m 50 L . onmy
Pab (7—2)_ " %:na Sin g

For the moment ratio in this case see PI, 7 and compare with PI. 6.

You will find considerable change in mt. ratio at the unsupported side.
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11, Practical rules for the design of two side support slabs.

Judging from the results obtained in the -preceding articles I have

reached the following conclusion.

a) If arectangular slab shown by Fig. 19 is supported at y=+b and
unsupported at ¢= +a, the bending mt. shall be caleculated with the follow-
ing moment ratio to provide for the load on the unsupported side.

The proposed moment ratio is B or B instead of —* which
0.3+45 o
E

is commonly used in practice.

In other words the effective width will be,
e=031+a=tl
If we use the same mnotation as in the specification of the Dept., H. A.

b) In slabs with long width, when it is possible that the rectangular
load comes near the unsupported sides, the portions of slabs at least equal
to the span or 2b from the unsupported sides shall be proportioned with the

calculation shown in Art. 8, or with the moment ratio,%_l_ﬁ. See Fig. 28.
This moment ratio shall preferably be used for vaiues of B less than

0.5 to expect aceuracy.
The remaining portion shall be proportioned by the caleulation in Art.
2, Chapt. 4, or by means of the usual formula.
.

"j3~+!3

¢) In point of economy as well as simplicity in caleulation, four side
support slabs shall be preferred to the two side support slabs especially in
long slabs.

12. Bolutions for point and linear loadings (w—A3>2).

In the previous chapters we have considered the nature of -stresses due
to rectangular uniform loading with const. intensity p, and observed how
they are affected by the load sizes. '

Now let us take a concentrated load P and inspect the change of stress
due to load distribution.



37 Important Problems in the Design of Reinforced Conerete Floors. 1019

The concenfrated load P is distributed uniformly over rectangular areas.
Fig. 29 (2), (3), (4) ave its special cases.

a) The solution for linear loading (2) in case (a—B>2).

Look ai the solution given by eq. (11), (12), (20, (21) in Art. 5, Chapt. 2 of

hich'substitute p, with , L=p S _.
WO SUDSHIRIS B WL S g B =Y
P
l . 3) =0
o T
e
i &
J S .
4 " S
25’ d’r_// /‘ ‘fr
s [
| . Za
£ =0
=0
EAREY

if v tends to zero, as

_ By mmd 168 P oy

tp=—>—"—8In S Ao B
A—— 8 nin® By 2
lim a et
B g ™ "t a s e e b e e e e rarareine. T
Y0 nhris 0

../1n,1 -Bnr: Cin!, -Du’ remain unchanged.

b) Linear loading (3).
Look at eq. (21), (22)
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a8
a.ntanh% tn n_:@
Che= , -‘, —
. 2(1+tanh 278 ¥ o "8
antanh nrf
3
Dn= Tl . . maBy
2(1»{-mnh '2 )
_ 18 P .. oy
on=——7T— i }37 1T 2
and,
lim Coom—aie-, £ g 1Y
B=0 nlzt v 2
R TS Y (68}
—~45 P . nwy
11m Dn.—'_‘- -— §in ——
nix ¥ 2
The solutmn 1s given in the simple form, in the 2
. ¥=
range az=zz=0. ﬁ/;,a
_ 4P 1 . mwy Ny
= Nty = T (155
nwy z - i
(cosh—_—b sinh — 7 )cos 25 . .{69) <
n=1,38,5._...
The deflection at =0, =0 is, for the loading '
shown by Fig. 30. Pa
41213 i - .
W),y =" Z““( 0E . (70) Fig. 30.
n=1, 3, 5,....
We have obtained the same result as were done by Dr. N4dai in ““ Elast-
ische Platten” S. 81.
N. B. In the book above mentioned it is given that
ua—(1+ TR ) Po?
1 Pca
but this is, wo_(l——-f —_— Ay
as ¥ clear by eq. (60} in the same page.
g) Point loading.
_ 16¥ P nary
an= P ﬁ'}' 1 —2
@ ha
lim Cnu= ‘?i “p
Bul
L St S .71
252
%3 Dp=~ 4 4
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and the solution is, in the range a=z=0,

26213 nry nrL sin nrx nary -
=N n"( )( 0sh % )cos—ﬁ .................. (72)
n=1 3 5....
The deflection at =0, y=0
2P 1
'(w)x=0,y=0= M A Tt (73}
n=1,3,5,....

The same will be found in “EL Pn.” 8. 85. .

For the values (M, )owo, o082, )20, y-0 due to a concentrated load P distributed
over rectangilar areas see Pl 4. and compare with Pl 8. which wag pre-
pared with the ordinary practical formula. Observe the limit of application

of the prevalent formula.
N. B. In the linear loading (b) eq. (69)

sin 2L
P(l+2) _ 2 -
'''''' ( jjf’”mwn,vo (M), . L0,y & 'nz — I
For the point loading
P+ e
Yy, =), g,y =) D ) (75)

This .series is divergent.
Chapter 5. -Continuous slabs on yielding supports.

1. General remarks.

In this chapter some simplest cases are dealt with. In deck plate girders
the slabs are often- separated by the main girders, the tops of which are
flush with the surface of the slabs, thus minimumizing the road surface
elevation and increasing lateral stiffness of the girders. See PL 1.

As a simple case we shall consider a continuons strip of a slab supported
by the cross beams and the main girders which are,considered rigid, and
we shall put into account the yielding of the cross beams.

2. The solution to a three span continuous strip, Center field
loaded..
Assumptwns
(1) The center field is loaded with symmetmcml umform load P which
is a function of ¥ only.
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(2) The supports are rigid except those ' P
[ /

G.t T= . ¥ T
x o p y 7
Solution. _ 2 ——‘W
In the same way asin Art. 2, Chapt. 2, ; ,‘ 1
we get. ‘ T, ,
In the range a=z= —¢ with origin A 24 za | 4a
at, , Fig. 31,
__,H nwiy
wI N < anCOS—gf)
.................. (78)
= mwy .o nmr ATy
Z(Au cosh— +BR, b sinh % )cos =
And in the range 2@-’5:&:.,2,0, with origin at B.
Uy = Dl\f {O’n tanh nree cosh—— :s —sinh 7;1;3:)
+Dn("‘_n; —nmx)(tanh naree smh - cosh = )} cOoS m;u ........ (77)
e _
5 =0,
wy,, satisfies the condition
o 3wy
(wHI)"”“MﬁO’ W—)wnza_

Any By Cny Dy, are the constants to be determined by the boundary eon-
ditions at the common supports.

To simplify calculation we shall consider the case «>1 or tanh nmwe=1.

3. Boundary conditions at the common supports.

With regard to a,

nwee

Crtnmce Dy=an+ 4ncosh -+ B, ﬁ"—sinhT ...................... (78}
With regard to iw—,
di
~Cp—=(14nmoe) Dyp= Ansinh L + { in n;‘ -!-%cos ngo: }Bn .......... (v9)
2
With regard to 9 Y,
g’ )
On'i'(z +7"!.1de) D,1,=.A1z COShﬂ—'T?g*'[‘ {20051} ‘?1‘1:)0: + Jm;w sinh n;ﬂx }:Bn, ........ (80)

As the last boundary condition we have,

aa'wn-) _ aswrn
95 /zeq axt

) u=ext.erna1 load for the supporting beam.
%o
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— (1K) Cu— {3+ nra(l—nrK)} Dn=An sinhié”?—

+ 3sinh1”—2’*ﬁ+ﬁ”§"icoshﬂ’§*- Br e (81)
The 4 B _ o it 1 | '
e torms —— vanish because it is clear from the second boundary
oy )
: 3 -3
condition that (iﬂn_) x(ﬂ)
2dY’ /pea N 820U Jane
Bl
2N
We get
nres ) in
RPRIE P
2 L N '
2{eosh— —+sinh——
2 2
apnmk 1———°—~—'—1 py— + &
2(1+ta.nh >
Ba= —

o e nmwer  paee L L AW .y MV nmoe
m-I{{(—z -{-1)cosh 2 5 ginh 3 }+2 smh*—~2 +cogh 2 ) \ . .(52)
Cn=an+AnCOSh1§%+Bn TM;OE ginh n;w —nmee Da

Cn NI
.D'n—'-?"l'C‘OShT Bn
_Babip . nnd .
o 25 /
It K=0 (No support)
ey
3 +2
Aﬁ.:_ nmwee nwee an
2eosh 2% (1+ tanh 2
o
B = nwee nace r
2eosh—— (1 +tanh——
ta.nhﬁ;rif
D an, etc.

T 2(1+tann %)

These values of constants are the same as in eq. (18), Art. 2, Chapt. 2 if
we put =30 & B=cu.
If k=900 or the supports are rigid,

1
anf1-——
2(1+tanhT)
Ba= h4tuar e cas AN aveE e .;......(83)

nwee nwe M, nwoe
+2)cosh-——-w ginh
( 2 2 2

P
8 2
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Other consts. will be obtained from eq. (82). .
See PL 11 for the effect of the support yielding.

4, Note to Art 3, Ghapt 5

Though it is a little difficult in case (¢<<1) to give the values of 4,,

Ly D, we can obtain them by solving the following simultaneous equations.

Chtanh nmo 4 Danwe = an+ Ay cosh—+Bn sinh”"”T"‘ ................ (84)
= Ca—(1-+ nortonh mmer) D= Ansinh 2% o (sinn 2% S g cosh T ) By
................ (85)
Cntanh nree +(2 tanh awee 4 nwce)Da= Ax cosh —+(2 coshn d -5-% sinhn—;oi) Ba
................ (86)
(rm K tanh nroe—1)C0% + { (nw K — tanh nawonmoe—81.Dn
= Ansmh———!- {3smh L "";" cosh '””’"‘} Bu i, (87

P. S This ch&pter is not complete, and as we have still many unsolved
problems to fit the “ Platten Theorie” for practice, I hope that more com-
prehensive treatment by some able engineers will appear in this journal.

In the end I must beg excuse for being so presumptucus as to give
self-decided opinions.

The end.

June, 1931.
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