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ON THE STRESSES AROUND A HORIZONTAL
" CIRCULAR HOLE IN GRAVITATING
ELASTIC SOLID

By Noboru Yamaguti, Dr. Eng., Member.
Synopsis

The stresses around a horizontal cireular hole in gravitating elastic solid
. with the horizontal top surface were calculated by the method of stress-function.

Firstly, the stresses vanishing at infinity and baving the same values with
opposite signs on a ecircular boundary with those in undisturbed gravitating
elastic solid were obtained. Superposing these with the undisturbed ones we
obtained the sufficiently approximate values of the required stresses in the case
the hole is not situated very near the top surface.

The results worth noticing are as followa:

1. Just as the plate with a circular hole pressed at both ends the circum-
ferential tension takes place at the top and bottom of the hole if we assume

the Poisson’s ratio cr=—21_:—, and the maximum circumferential compression takes

place on its both sides.

2. "When the hole lies snfficiently deep from the top surface the above
mentioned stresses are symmetrical with respect to the horizontal diameter of
the hole. When it approaches to the top surface the bottom tension becomes
greater than the crown fension.

These mathematical results were ascertained by the model experiments with
agar-agar, and they might be used as an elementary theory of a circular tunnel
without lining.

1, Infroduction.

The problem of elasticity of the pla.ter with a circular hele considered in
connection with the rivet hole has become almost classical. Several investi-
gators treated the problem both theoretically and experimentally, amongst
whom Profs. Suyehiro and Yokota of Tokyo Imperial University -and Profs.
Kirsch, Leon, Foppl and Morley may be noted for their theoretical investi-
gations. Reeently W. G. Bickley took up the samse problem and treated it
elaborately by the method of stress-function.”” This has stimulated the present
writer to investigate the stress problem around a horizontal ecircular hole in

{1 Phil. Trans. Roy. Soc. A Vol. 227 (1928).
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gravitating elastic solid by the same method. The problem is usually treated
as «the generalized plane stresses, when it is applied to a thin plate. But
here we treat it as the plane strains with the aim of applyiag the results to

the-stability of a circular tunnel without lining.®

9. The Stress Distribution in Undisturbed Gravitating.Elastic Solid
with Horizontal Top Surface. '

Taking the co-ordinate axes as shown in Fig

P 1. we have the equation of equilibrium
S 7 4 ,_‘ ,y_ . (1
- 2 i aiy _].. aiy. = 0
: dy Oz

where p iz the density of mass, i.e., pg is the
unit weight of mass. From this we obtain the

stress-function F defined by
' VF=0 ooiiiieiiiainenen. (2)

just the same as in the case of mass with no body force. The stresses are

Fig. 1

given by

- & & ~ i

2% aF+fpgdw, yyd_ E;, myz—aF A ]
ooy

Assuming that pg is independent of the depth and that the strains will not
be produced laterally, we easily obtain the following values of the stresses in

undisturbed gravitating elastic solid.
—ad

where o is the Poisgon’s ratio.
If we write these in the polar co-ordinates, we have

(1) One of my colleagues Prof. Y. Tanaka hay kindly noticed me that Dr. F. Schmid
treated the same problem in his treatise, ‘‘ Statische Probleme des Tunnel- und Druckstol-
lenbaues ”” (1926). He treated it rather technically and the result is morve complicated than
mine. I wonder if it may be regarded as the same with mine.
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Here W=ggz, and V=pga, where % is the distance of the center of the
hole from the top surface and a is the radius of the hole.

3. The Stresses with Any Possible Values on the Circumference
of a Circular Hole and Vanishing at Infinite Distance from it,

In the case of a thin plate (i.e. in the state of the generalized plane
stresses) the stress-function of the stresses vanishing at infinity and satisfying
any possible conditions over a circular boundary was obtained in the general
form by Prescoti” and Bickley.® In adopting their results here we have to
reduce them into the state of the plame straims. This reduction naturally
affects only the terms involving the elastic constants, and the elastic con-
stants enter into the cyclic terms only. The cyclic terms in the stress-
function in the polar co-ordinates are as follows:

F= Aofrﬁsinfi’+Bua'ﬂcosﬁ+Awlog¢cosﬁ+Blrlogrsine e (B)
The coefficients 4,, By, 4;, B, are not independent. They must be de-
termined to give the single-valued displacements.

The displacements w, v along z and y in the state of the plane strains
are '

(1) Prescott: Applied Elasticity p. 381,
(2) Bickley: loc. cit.
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where
o (x+‘>u)( a@)
dr By 3?1
T
dy ox dx By

and A, p are Lamé’s constants.
Since
TE+YY=VF= 9(7\-:— ®) ~Bi+—)
8 _ O A+
dr dy 20ntp)
and as Aw=Eo/(1+0)1—2) and p=E/2(14+) (where E is the Young’s mo-
dulus), we have

M 1)y L .
===V L @)

Nabla square is not changed in value if we transform the co-ordinates from
. &g & &, 1 2 1 &
z, 4y tor 6, ie. V° _— e
v + oy afr‘+ r o g
Therefore we have from (6)

-~ i{ (do+ Ar)cosd— (By— Bl)sinﬂ}
T

E:(I-—0‘){2(.&10-1-111')108'?‘+2(Bo"—.31)6} } . (10)
n=(1—o){2(dp+ 418~ 2(30—31)1035";

And we have
2uu=2(1 —&)(By— B1)# — B +acyclic terms } o 1D
pr == 2{1 — o)Ay + A — Af+ acyelic terms ‘

Putting .the‘coeﬁcients of the cyelic terms equal to zero, we have

315-2—(1_1__%_ B, and Al_—d 1-.1__;)51O

Therefore we have the following stress-function which is sufficiently general
for our present purpose.

(1) Love: Elasticity 3rd ed. p. 205.
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The stresses derived from this are
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4. The Stress Distribution Near the Hole in Gravitating Elastic
Solid with Horizontal Top Surface.

The radial and shearing stresses in undisturbed elastic solid on the
eircumference of a circle is

()= _%(1 + %)+£(3+1L) cosﬁw—g—v(l—l—m cos24 |

1— —a o

o+ —(1 —I- a) cos30 (14)

(r8)g= — 1(1 —f'—'—)smﬁ + -IQL(I — 1—_-;)311126 ——%(1 ——2 )sin34

4 —a —0
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Picking up the relevant terms from (13) on putting r=a, and comparing

with —{(i%), and —(7"9\)95 of the above expression, we have

Ao= W(I—f-—), 1=_K, _Az:_T’_V(l_L), AS:K(l_L)

2\ 10 2 ) 2\ 1-o i} 8\ T 1—¢ a5
o
G=0, G=f(1-7%0) a=—(1-7%)

Therefore we have

S O R D e

_3( ) }c0529~—(1 _ﬂﬁ>{5(%)3~4(%)5}00536
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)= o0
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These are the; stresses vanishing at infinity and giving—(7r)s and—(7g). on the

(16}

}sin?ﬁ

cireular hole. Practically we may assume that they vanish readily at a certain
distance from the hole. Therefore, combining these with the undisturbed
stresses (5) we obtain the required stresses, if the center of the hole is not

situated very ‘near the top surface.

e e
S Pl o Va2 o2 o

{
o2 ) ol o
=21+ )1 +(%)} J?K{(H%)"(l g Epeose
+ %V(1 - G) {_1 + 3(%)4} cos 20 o
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And. - .

z@:a(ﬁ'+@), FRe=fz=0

These will, of course, satisfy the equation of equilibrium in the polar co-or--

dinates:
arr +l ord _'_'rf.l'—-Gé)mpg cos @
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] .. (18)
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The terms with W have the property similar to the stresses around a circular
hole of an infinitely extended plate which-is pressed uniformly at z=r =oco.
If we put =0 in the coefficients of W, these coincide exactly with it. The
compressive intensity at x=+o00 is W. These terms give the stresses which
are symretrical with respect to the y-axis.

The terms with ¥ represent the remaining stresses dueto the unbalanced
weight coming from the gravity effect. These give the stresses which tend to
infinity at the infinite distances upward and downward from the hole.

If we tabulate the values of these coefficients assuming a.ﬁ% (for Tock), we

have
Ty (PL I) I (PL IX)
6° 0 30 60 9° - .0 30 50
Z 180 159 120 90 2 180 150 120 90
1 1} 0 )} 0 1 0 0 0 0
1/2 — 039 —.524 —.434 —.398 1/2 =+1.50 #+1.055 =+.330 0
1/3 -~ 778 —.667 —.445 —~.334 1/3 +2.70 +1.876 +4552 0O
1/4 — .B72 —.729 —.443 ~. 300 1/4 =+3.53 +2.639 +.787 0
Ifoo | —1.000 —.816- —.437 —.250 ljco | + o 4+ <o + 0
£ (The upper row of 6 takes the upper signs and the lower row of 8 takes the lower)
Iy (PL IIY) I (PL IV)
g° 0 30 6) g° 0 30 60
= 189 150 120 % = 180 150 120 90
1 259 —.500 —2,000 —2.750 1 3.500 =+ .317. + 875 0
1/2 —.336 —.559 ~1.004 —1.227 1/2 | £.427 =+ 677 B nd 78:7 0
1/3 —. 306 —.500 — .8%9 —1.083 1/3 =+.691 +1.082 *+1.184 0
1/4 —.284 — 477 — ,851 —~1.043 1/4 +.956 +1.35 +1.6802 0
/oo —.250 —.437 - 815 —1.000 1/c0 + @ = o  E oo 0

{The vpper row of 8 takes

the upper siins and the lower row of ¢ takes the lower)
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an (FL V) g (Pl VI)
© 0 30 60 ¢ 0 30 60
% 180 1650 120 0 fri 187 150 120, 80
1 0 0 0 0 1 0 o 0 0
12 0 £496  +.426 0 1/2 0 — 563 —.o# 141
18 0 385 .38 0 1/3 0 — 830 —.433 .085
1/4 0 £.362 =362 0 1/4 0 —1117 —609 .051
1/ QO +.324 =+.324 0 1fco 0 — o -0 0

(The upper row of 0 takes the upper signs and the lower row of 8 takes the lower)

The stresses 8¢ are the most important ones concerning the rupture of the hole.

If we take the terms with W only we have the maximum compression ab
6=90° and 270°. This is (@)wz—(3~1L W, and it may be worthy of
-—a

notice that the tension exists at the top and bottom of the hole."> Though this
amount is not large, the rock usually has the low tensile strength and it might
become the weakest points of the tunnel. The effect of W will be applicable
to a deep tunnel. In the case of a shallow tunnel we must take the effect of
V into account. The terms with 7 do not affect the maximum compression,
but it decreases the crown tension and increases the bottom one. As regards
the other stresses, 77+, ';B, the parts due to W are counteracted by those due to
V' in the upper half and increased in the lower half. On the top surface all the

stresses naturally vanish and with increase of the depth they increase infinitely
in magnitude,

5. Numerical Exzamples.

Example I: To find the stresses in a comparatively shallow tunnel. Take the
depth of the center of the hole 2,=20m, the radius of the hole a==5m, o=1 [5,
vg=2.0 t/m%earth). Then we have W=4kg/ecm® and V=W/4.

'f?he stresses are given in the following table, the unit 'being kgs. per cm®

(1) If we take the larger value of the Poisson’s ratio, this tension disappears; e. g., we

have the hydrostatic pressure for a-=%. ‘ . '
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g° 0 90 180 &° 0 90 180
a
Ca
1 0 0 0 1 50 —11.0 1.50
1/2 —65 ~132 —3.65 12 —92  —490 ~177
1/8 —.41L —1.38 —5.81 1/3 .53 — 4.33 ~1.90
1/4 —.04* —1.20 —7.02 1/4 02 — 417 225
1fo0 —1.00 — oo 1fo0 — 4.00 — o
70
60
o 0 30 60 120 150
T
1 0 0 0 ] 0
Y2 | 0 114 148 —195 —2.27
1/3 0 71 111 —1.97  -2.387
1/4 0 .33 84 —2.05 —-2.57

* These must be zero rigorously freated, as they are the stresses on the top surface. We see
from these that the errors are not important even in the case of such a shallow tunnel.
Terzaghi® shows that some clay has the compressive strength as high as 11.6
kg/em® which is about the same value underlined in the above table of 4é.

Example 1I: To find the largest sus’caining. depth of a circular hole whose
radiug is 5 m. |
For a soft sandstone we have yg=2.35 t/m’ the compressive strength=:200
kgfem® and the tensile strength=10 kgfem®.
We have the maximum compression on both sides ;
(80)ue= —6.46
Equating this to 200 kgfem?® or 2 000 §/m* we obtain the largest sustaining
depth for compression 2,=310m.
As we have the maximum tension at the bottom
(80)ra0=.5875 (2+10) |
Equating this to 10 kgem? or 100 t/m?, we obtain the largest sustaining
depth for tension 29=1601m.
For a hard granite we have yg=2.78 t/m® the compressive strength=2 000-
kg/em? and the tensile strength=77 kgfem®. ' '

(1) Erdbaumechanik S. 78.
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. Therefore in the similar way we obtain 20==2 600 m for compression .and
2y=1 100 m. for. tension.

*6. - Summary of the Mathematical Investigations. :

We, firstly, obtained the stresses vanishing at ilxlﬁxiitf and having the sa,rhe
values with opposfue gigns on a ecircular boundary W1th ‘those in undisturbed
gravitating -elastic - solid. Superposing these with the undisturbed ones we
obtained the stresses near a circular hole in gravitating elasti¢ solid. "The
results worth noticing are as follows : ' - ' o

(I) Just the same as the plate with a circuldr hole pressed at both ends
the cireumferential tension oceurs at the top and bottom of the hole if we assume

the Poisson’s ratio a:E, and the maximum circumferential compression occurs

on the rlorht and left sides.

(II) If the hole lies very deep from the top surface the cucumfelentlal
stresses are symmetrical with respect to the horizontal diaweter of the hole
‘When it approaches to the top surface the bottom tension becomes gfreatea" ihan
the crown temsion. ‘

These results may be used as an elementary theory of ‘a circular tunnel

without lining which is not situated wery near the top surface.”’

7. Experiments with A.ga,r-a.gar.

To verify the above obtained mathematical results, some mo&elr'éxperi-
ments were made with agar-agar (or Japanese isinglass). Agar-agar ‘with p’roper
content of water has comparatively good elastic property as shown by the
load- elono'atmn curve in Fig. 2. - ‘ |

Agar-agar was cast in the rectanvular box having the size 70 % 50% 8 cm
the least dimension being the depth. When it was cooled a cireular holelwu‘,h
the diameter 7.5 cm. was punohed after we erected the vessel with its Jargest
side in the vertical position. The initially circular hole deforms into the elhptlc
one by the weight of the surrounding medium. Pl VII shows the general
aspect of the erected state. As the size of the vessel is sufficiently large compared
with the diameter of the hole, the boundary effect of the vessel does not appear

(1) If a cmcular hole ligs uery near the top surface, we might have to use the bl-polar coor-
dinates -which is now under investigation by the present writer. -
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near the hole. If we prepare beforehand the surface of agar-agar with the cross
lines drawn with the hectogragh ink, we can take the prints of it showing the
various configurations. Pl VIILis a photograph of such a print taken before
the box is erected. Pl IX o |

is a print taken when the box 20

18 erected vertiéally.: It shows

Croms Sechon to-00°"

irér.y clearly the deformation

near the circular hole, whose - %

horizoptal diameter remain- ol

ing almost unchanged, while -

the vertical diameter being il

shortened. The depth from & Q}&

the top horizontal surface f",m_ Y o0
'to the center of the hole E

is 37 5 e, Trom this we S

see that the depth of 87.5 N

cm. 1s suﬁiment to give the

symmetncal strains with re- 7 3 ; ;

v 7 petormation ¢
gpect to the horizontal axis

of the hole having the dia-

meter of 7.5cm. Here we may take only the terms with W-in the equations

Fig. 2 Lood-Elonga.tion Curve of Apgar-agar

(19) If we measure the distances between the cross lines by the comparator,
we might estimate the actual stresses taken place at any point on the
01rcumference of the hole by the aid of the load- elongation. curve shown
in Figi 2. The print shows, o our unexpected interest, the lines of principal
_stresses -which are the traces of the ripples made by the thin crustal film
of the surface of agar-agar. Pl X is another print taken, the depth of the center
of the hole baing 18.75 em. from the top surface, i. e., the depth is two and half
times of the diameter of the hole. = When we investigate the print carefully we ob-
‘gerve that the top cirvature is larger than that of the bottom one, i. e., the top
arc is slightly pointed when compared with the bottom one. Here the effect of
the terms with V in the equations (19) appears, i. e., the bottom tension is

larger than the top oue. - We might conclude from these experiments that
4
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the above mathematical results are verified at least qualitatively. Strictly
speaking, we had better use harder agar-agar, as it is doubtful that such
a large amount of deformation as shown in the present photographs can
be treated by the ordinary theory of elasticity. There is one more problem to
measure precisely the Poisson’s ratio of agar-agar which affects the values of the
stresses considerably. All these important experimental investigations which
are necessary to obtain the quantitative results are now undertaken in the
Research Office of the Japanese Government Railway. The results will be published
shortly. In conclusion, the present writer expresses the indebtedness of these
experimental performances to hisz able assistants Messrs. T. Hata and"G.
Kubota of the Research Office of J. G. R.
January, 1929,
Tokyo, Japan.
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