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THERMAL FLEXURE OF A THIN PLATE HEATED
ON ONE SURFACE, EXTENSIONAL STRESSES
TAKEN INTO ACCOUNT.

By Nobora Yamaguti, C. E., Member.

Synopsis
This paper is the continuation of my former paper on ‘the theymal flexure
of a thin plate, one surface of which is heated aniformly. In this I have taken
snto account the extensional stresses, which were not considered in the pre\'io:us
disenssion. The result was that the fundamental equat@ns are no longer
. linear, and moreover they are susceptible of being sol‘yfed thy with eertain

limitations. :
In the following, I have taken up cases. of an mﬂmtely ex’oended strip and

)
2 ecircular plate as being approximatively soluble.” The results ,obtained show

slight variations from those in the former paper, the difference naturally becom-

ing meyligible when the supporis ave not strictly rigid.

(1) Fundamental Equations.

A year ago I tried fo compute the thérmal floxure of a thin plate, one
surface of which was uniformly heated. At that time I assumed the supports

were not so rigid as to give any extensional (or contractional) stresses to the

Neutral Plave.
If the supports how ever, are not sufficiently v 1e1d1n0* the above mentloned

stresses must be taken into ‘account as I remarked 1n the foot notes of my

former paper.” Now we deduce the fundamental equatmm of such a case.

Assume the temperature t==t(x,9y,2)

(1) On the Thermal Bending of a Plane Wall H:eated' on -Or'xe. Swface. (Jour. Civil Eng.

Soe. Japan., Vol. XIII, No. 4.)
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Fig, 1,

. Pig. 2.
A point (z,9,2) in _the. plate_ is subjected to the total displacements £
{. Each of them consists of the displacements due to the strains and to the
temperature. But it may be assumable that the displacement & is independent
of » (i. e. it is sensibly of the same value along the normal to the Plate),

as the thickness of the plate is assumed to be sufficiently thin. (Fig. 2) On
the Neutral Plane; we have fh=¢{0,y,2).

The strain solely due to the stresses are ;
3y 1 3EN?
gy=_77_ +H(a_)

dy 2\ ay
sa:ﬂi,.l( o ) (1)
dz 2\ gz .
t i =
el O 3 8%
gz dy  dy o : o o
where 5 and ¢’ are the parts of displacements due to the-stresses.
And we have '
f
D0
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where 5 and ¢ are the folal displacements due to stress & temperature and o

is the linear expansion coefficient of {he material.
Therefore, we have '
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gz fy ody &=

If we take away for the time being the strains due to the curvature by bending

action, the above values may be considered as the mean strains across the

thickness of the plate, and we may treat them as the case of the generalized

plane strains or stresses.

We huve
81:**1—(0'@-‘_ 1 o-,) .
E m
/
gzmil,,:_.i@) )
E\ n
'}'u:—LGTﬂz
or \
Al . ]
oy = L (gy-{-iez):_E'_{ﬁ-l-_l_ﬂ—(l*—i)atu_'_l(m?i)
1— 1 m 1-——l oy m Iz m 2\ 2y
m* mn?
1 85)2}
o
2m\ oz
. £ s
rom B (o Do) B (2 L (1) L)y L(EY @)
1 m 1'9: m oy m 2\ gz
1—-— 1o
m” m”
+L(5_«5)"}
2m\ oy
T:G'sz =G{_8l+a—é‘+£a_§}
‘ oz oy gy o=

where E, G and m are Young’s Modulus, Rigidity Modulus and Poisson’s

Number, resp.
The identical relation (the condition of compatibility) between the total

stl'ains ﬁ- ks and Iy 4 B are

CdE ‘gz Oy
Z 2 2
3,,(32)+~3—9(—6’£)——3~(f3—"+£)=0 e (0)
ez~ \ 0y oy \ 8z dyoz \adx Yy

Putting the values of total strains by the equations (8) in the above equa-

tion, we have
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ey | Fe e (atn " a‘"’t.:i,f)JrLi'( aé) 41 (as)
o o dyde P at 2. 857\ dy 2 8y
OF 3F ‘
ayaz v bz

Putting the values of &, &: and vy by the equations (4) in the above equation
and using the following Airy’s relations to the plane stresses which are derived

from the equation of equilibrium,

#F FF FF o
y=— = and Tn=— PR 1
T T T yee @
we hLave
2 H 2 2 F .
VIV = — g BV, +L‘K i E)—ﬁf; 3f} (9
oyozs Oy oz
2 2
where vi= 3_2+ 3_
ay' o2°

Now we consider the strains due to the flexure only.
1f the plate is sufficiently thin, the deflection occurs in such way as the
normal lines to the Neutral Plane romain straight and normal to the Elastic

Surface, (Fig. 3)

whence sy tall—il)=—=2 85 \ R I
S+0€(t—tn>__ 2-‘{: (10) DC(S)E
= 1
Vys= =22 a1
090z
and we ‘have the stresses,
‘ Pig. 3.
oy = E (E!f'{_iaz):_ E { il + - i aé 4+ e 1+_ (t“"tu)}
1 m 1 gyt m ot .m
1—— 1——
n m
¥ . 2 . A
o= £ (sz—l- ! gy j=— E { A ey v 9 E +oc(1'+'~L) (t-ﬂ—tn)} (11
‘ 1 m . 1 Az ¥ e
1— - 11— o i
m, m ; )
Tye= G'}’y: e iji ‘ ' J
oyoz

Therefore we have P
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d=(aedn=—D{TE - E (1 )

m 9z om A I
)

2. 2
M, ﬁga ’ld“b“‘“—D{ E 1 a'i,:, +(1+.—1— —9} o . ..(12)
' m 8y m/ I
)
]u-yz= g’Tusﬂl (ZLL'= ’_D(l_i") H-E
. w7 Aoz
s
where CI):&S (t—to)eda, J= S:cﬂd.x and D= E{l
(i) ) 1__2
"
The shears are
T’ry aﬂf,,+ .-IL )
a o 1D
V_:iaﬂi} I oM.
B My
The equation of equilibrium is
IV +—= V. +p+hoy, a—{‘!‘hd‘-‘ BE +2ry:h 7€ =0 ............(14)
3y Oz oy 8 oyoz
where p is the distributed load.
Or we have . : S

1+-L

' 2 : o o 2 '
- 2py. CI)}—!— L7 FF FE e _23F FE —0..(15
{V vE I e r L{ ot af * iyt & dydz 3yaz'}- (15)

When the one surface of the plate is heated uniformly all o*uef, as we
are going to deal with here, we have V4,=0 and v'®=0 in the equations
{9) & (15) and they simplify themselves in the following forms;

- 2 2 2p e

V“V'FzE-[( a&)_ 7 e
2oz ey o3
2 4 2 2 1 2 z 8
,.DVQV"’Em}H-,h{azf AR A A i }
T ' 8 Y T 3@;3/, Yoz

.. {18)

These are the same as Foppl Kcmnan 's equatlons of the ﬂexure of the
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thin plate with large deflection by lateral loading.® In our present problems,
we must, of course, put the temperature effect in F.

(2) Infinitely Extended Strip.

In this case it is easy to solve the cquations (1) (16).
If »=0 and £ is independent of z, we have
VR E=0

Da{é-—haz‘F g —0 S € 8|

&

dyt 22t dyf

The Moments and Shears are,

MW:—D{-J’"—E+ 1+-L. 3}, M:=~—D{i i +(1+—1—)%},My:=0

daf m/s I m  dy’ m
d? ‘
V1,=—D{Ey%}, V,=0

.(2)

. ~2
(I) If £>0, we have o,= Eai; =¢<0 for the inextensional supports.
z

Therefore

daiE . 4% 2 hC o
+ _____(), T — e L e
dy‘i n dyi T _D ( )

The general solution of this equation;

E=C1+ Coy+ Dh cos my+ Dy sin ny
If we take the origin at the center of the strip (Fig. ), Fig. 3.

£ will be an even function.

E=01+D1 COS 1Y

¢, & D, are determined by the following boundary conditions;

——

/

2

E=0 and M,=0 st

re)

— .
r=t— for the supporied cdges.

M A, Nidai (Elastische Platten S. 264) deduced similar equations to (9) & (15), assuming the
plate will remain perfectly in a plane with respect to the extensional stresses. But the present
author ventures 1o. think that they are to be modified a little, as such a plate will be subjected
very soon to a finite amount of deflection,
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Cl + .D1 COS—?%;LZO

e

— Dt cosi;’;— + (1 + %)%: 0

=4

whence we have

01:— 1+-1—) —-(—Iz-)-— and DI:(]--I—L)_Q;_-J-—Z
m/ n m s I rngcos%
Therefore we have
cosﬁl——cos ny
m/

2 n
1 COS——
o

puiy

If C is very small ie. ° is very small;

(3)
2 (ny?
R T I PaC A
e=—(1e 1) 2 2 N A
I

o {1 _ (%i) }

R

S R) 2o @

-

This coincides with the equation of my former paper (loc. cit.) p. 11,
where the extensional strains are not taken into account.
The wvalue of iz to be determined by the condition that =0 at

y:i% for the dncxtensional supporis.

Omrm B {00 (14 1 Yoy L)
1-_1 ‘dy m

i i i

. [
2 E (1% dy ( 1 ) B 1 —( (l?)z }
I = 1 _— ? - 1+_ ’t —_— a— lq
Su(/(h 1 l§n dyf Y " * Ugud-y-l— 2 L dy “y

1-—
"
7
Ci_ K { ( l) ! 157(@*)2 }
e B0 ) Y NLES AR P (- I
| m/ 2 2h dy Y
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w

But (O=-— D __ alED
h 12(1_%)
mo

W= ;QZ-{(H%)OM—EU Si)dy} e (B)

From (4) we have

( d’E )2:(1+L)2(_¢i)2 sin® ny ]
dy m I A

n® cost —

]
ﬁz( )d’y (1_!__) (2)2 1 {i_sinwl}
o \dYy N I 0t cos”ﬁ 4 EET
Therefore, we have

p_ 12 ( ) ( 1 )2(43)” 1 1 1 nl
=22 1+ P Ver—(1+ LV (2 — L ——-]
CT 1 m/ m I 2312[ ot g }

2 cos®
2
or (D
2 2
_n‘ - T]% {(1+L)o&z’0n2—-(l +—1—) (E)—) } [————1—————‘1— tan 431 ]} =0.
) m m, I/ 2 9 cos® _,;_?“ nd 2

This is a transcendental equation to determine 2.
We can obtain an approximate value by developing cos & tan into the
serieg and taking the first terms.

1 _ 1 1 =1
9 ¢ Sz_’ﬁ_:;l“ 1+cosn,£ 11— (ni’) TR
1 R {w] 1(01! ) |l 1
LI LN L R e,
ni o 2 ni 3N 2 } 2

Therefore, dropping the term concerning the thermal bending, we have
the equation to determine the first approximate value of =;

ok ——(1+—1—)oc t ]
LE W

, ®)
or C=——M 12D(1+L)m10_ £ oty
h n m 1—-L
™

I We have many solutions of this equation which correspond to various modes of £. Bat
we take only the lowest value of them, i. e, the gravest mode in terms of vibration theory.
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v

This value of C is that of the plane thermal stress.
Multiplying both sides of the first equation of (8) by [*, we have

14
9zzl2=12(—1)(1+——1—)od0 P 1)
h )

The values of nl for _],l_—_—]_()() & m=4 or 10 are shown in the following
2

table & graph (PL. I)

The Values of n! for ~}Z—:IOD
h

t,(C®) m=4, «=,00001 ('S.teel) m=10, «w=,00001 (Concrete)
1 1.22 1.15
3] ' 273 2.568
10 3.86 3.64
i5 4.795 ‘ ! 4.45
20 5.45 b.15
25 6.10 5,75
30 6.68 ‘ 6.30
40 7.7% . 7.87
50 5.63 8.13
81 . 10.98 10.35
160 12.20 11.50

It we put the above value of #%* shown by (8) as the first approximate

value into the first equation of (7), we have

12 { 1 ) ( 1 )( & )ZI{:’L’}
14+ — et 1+ =} ==

h? m, o ey I 724 vty

tan Tt
1 _ an 2 nl-—sin nl

s 1l ni 2 'nF
2

where K=

2 cos® == 2 nl cos™ L

=

If ¢ is linear w. r. t. 2, i. e CI)=ocf! (t—ty) ade=c®I [® is. the tem-
(8

perature gradient.], we have

wie(14 L) 2 - flg(_h“)t Lo

or =121 Doy {1 (I ) TE

m 24 h
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C= —Foh {1 K t )} D

1—L
m

These solutions fail if the value of K becomes as large as IL%( ? ) be
i

i

comparable with unity. K—2c when cos%ﬁ 0 or nl=w, then £ tends to co.

]

This corresponds to the lowest buckling thrust of the plate.

The Values of K (PL. IL)

nl 05 1.0 1.5 2.0 2.5 5.0 3.14

K 0.022 0.114 0.314 0.933 3.85 95.8 [eo)
Comparing these values with nl- graph (PL. I) we have the limiling

value of temperature applicable to our caleulations, e.g.

1,=925° for L =50
h

=100° for +.=95
.

For the value less than this temperature, we may have the corresponding

values to K and we may or may not have the, legitimate values of I{)—4( h)

(which must be far less than unity).
The bending moments and bending stresses arve obtained by

M, =~ Ed 1 _COos ny )
1 1 anl
- COZ
m 2 R & 14
& D ] S
R E o eosmy o (t—fo)
1 1 y nd
m 2

If ¢ is linear w.r. t. 2, we have

M= — Ect(:?)fjl_ cos:.n]y 1r
1_; l‘ 005”6 J L

n 2

_ Bra® 1, cosny \L
' ol J

COz—

m v
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We see from this that the bending moment M, will not vanish except at the
supported edges and that its maximum value occurs on the centre line of
the strip. We obtain the analogous expressions for M. and o. from the
equations (I) (11) & (I) (12). At the extreme fibre we have the fibre stresses
o=, 4 0= — Ee [{l R ( h )}t"_. @h {1_ cosny }]""“4)
1—.1 24 cos T

2 nl
05—

1y

If sni—»r the above solution fails.
an It £<0, o,=C>0, we have n'= hg <0,

Therefore put 4n instead of n in the above solutions for {>>0. Seeing
that cos iz=cosh and tanix=1% tanhz, we can convert the above solutions

to the case of t&L<0.

Or, if we put n’= ;f >0, we sball have the following equation instead
of (4),
® coshﬂTlucosh ny
g=(1+ ) = e 1B)
m i cosh%w .

If C is very small, by developing cosh into series & neglecting higher

terms, we have the same value as the eq. (5)

gz(l+i)g{l+%(%l)2+§1g(ﬁ;)‘+ y ..}—{1+_§(n92+21_4(%y)4+._}
. m s T {1+f(”l)+ﬁl(ﬂ)‘+m_}

2 24 \ 2

(1+—)§’ é{(é)—yz} e as

For the inextensional supports, we have the same equation as (6}, and

we put this time the following value in it.

%’ 2 V 2z 2

5‘(ﬁ)dy=(l+__1ﬁ_ (_?L 1 lt U S -

o \dy m I/ 2nt 2 2 2 Ml
2

cosh

and we have
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2 2
s e e e R e
BN m /2070wl 2 g pen it m
: 2 .
or tn,‘i--- .J'.g (1 +i)2(£)2l __I_tnl }} ﬂ-]- ———1—-1 (1+i)0£t0 =O
Ii¥ m 17 2 (al 2 5 oshz ) m
2

(1D
Thiz is the transcendental equation which gives .
We can obtain an approx. solution by developing tanh & cosh into the

geries and taking the first few termg when ol is small.

——]‘—t hwl 1-—u(ql@-:i—]-.... =l
nl 2 2 24 2
1 _ 1 _ 1

Qcoshz%l 1+coshnl 1+1+(%)l )+. -

&

1
2

Therefore neglecting the term concerning the thermal bending, we have the

equation to defermine n,
= — A2 (l-l-i) ty

i m )
o, 1 8
o= wD__ B ety
h 1—_L_
m

This is the same as the plane thermal stresses. As 4, <0, 0>>0 i.e. the stresses
(' is in tension.

If we put the above value of #° as the first approximate solution into
the first term of the right hand member of the équation (17), we have

(0 D -l e
==l — 14— ) = F—1{ 14 = Joit
Lt m I 7 2de, m !

..(19)
where IV ———t(mh n_ 1
‘ o 2 9ieenzf
2
If £ is linear w.r.t.z, ®=a®F
) __ L) 12 .
w=—(1+1) 2, {1+ Q_MDA} -
22 (20
o __ Baty {1+ &% N}
1 2 1,

m
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The Values of ¥ [(PLs Ill-)

nl 0.5 1.0 1.5 2.0 25 3.0 35 40 45 50 55 60 65 70 75 80 85
N .021 .070 .125 171 .199 .211 213 206 .195 .184 172 .161 .150 140,152 124 117

If C is large or » iz large, ta.nh%zu — 1 and

=

i 1 NS
4k —lNT * it
cogt L (cT + nT)
5 er a0
= 2
. 2 =N
o= ——1%',(1+i) cdﬁo{l—(l-i-—l—)—-———@ N — }
h* ) m / Lol .21
L)
where N'= S —-
nl 6
The first approximation iz
nE=-—19 1+L)°‘_';“ or Czﬁ_ﬁE—ato e (29)
m/h P
m

This iz the same case as n is very small.

Putting the ahove value of 7* into the first term of the right hand

member of the equation (21), we have

. 2 7.2
n”=——1]3,o¢tu 1+ L)1 0 '}
.

m 24 s (@3)
T 272 e e e
or O:_ EOLt(l {1+®h N’}
1 24 4
1
b

for the linear distribution of temperature.

The Values of N' (PL. 1¥)

wnl 1 2 5 § 10 11 12 13 14 15 16 17 18 19 20 30 40 50 100
N 261 .23ﬁ 186 134 100 .091 083 077 .07L .0B7 .062 .05S .055 .052 .050 .038 .025 .020 .010

The Bending Moment and Bending Stress along y axis are;

M,=- ED 1— cosh ny 1 — Ea®f 1— cosh ny

1 nl
1——= cosh b l 1—-—= cosh ——
oo 2 i 2
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1— cosh ny (24)

cosh .
2

-1 L osn 2L ‘ ) 1—=
m 2 0

L), Deoshny (i_m}z _ Lz

The last members are for the linear distzibution of temperature. The
analogous expressions for M, and . are easily obtained from the equations
(I) (11) and (I) (12). These solutions will not becnme indefinitely large as
cosh never crosses the zero line.

We see from this that the Bending Moment will not vanish except at the
supported edges; and that its maximum value occurs on the center line of
the sirip.

At the extreme fibre we have the fibre stresses

) O ... , Lo |
oy=Ctoy=— E"‘l fo+ -~—~2.47§ NN+ %’1 . cosh gy, '”;’ ..(25)
’ 1—= fo : cosh -2
m ) 2

Remarks: for the fixed edges (encastré) we have the boundary conditions
E:O and —d—‘izﬂ at y= —Li , which give
dy 2
01+D1 COo8 —— Wl =0

for the case >0

al
T Dinsin — =0

From this we have Ci=0D,=0, that is, the strip will not bend at all in

the wider domain than that of the preceeding case. It will buckle, if the values
'nl

(3) Circular plate.

Taking the origin of the coordinates at the center of plate and treating
only the case in which F and & have the axial symmetry, from the eg. (I) (16),
we have
E JE d°t

gt _
vy » dr drf

op

(1)

1 dFd
g

DVVE=p+h 1 1 d*F dE o d fdF dEND
VVE=pt { } =p )
d

dr dv® e do® dy r dr \dr dr

- 1 d
‘here T — % )
where V= m (9 I

The moments and shears are



15 Thermal Flexnre of a Thin Plate Heated on one Surface,

M_'_D{cfﬂif_‘_l 1 de +(1+l)9}

dr® mor dr ms I
£ ]
M= ___D{ld 1d§+(1+ )g} e (2
dr  mdr® ms T
M.=0
V,= —D-L v
dr NE)
=0
The stresses due to the flexure are
J 28 x JdE
S {q, d _,+lii—+on(1+l) (t—tg)}
1— AU det moy dr m
m? .
o= — E {'a (IE+£gi;E.,+d(l+l)(t—tu)} S (4)
L Urdr o de m
mt
Tu=0 -
The extensional stresses in the Neutral Surface are
2 il
(J',.:—l--i'ET o’—-dI‘ T”:O.{S)

r dr’ Tt
The extensional strains of the Neutral Plane are obtained as follows.
straing solely due to the stresses are;

- day' 1 dé’)
J ar dr
N
ez:A? A ()
.
=0
where Ay ig the radial displacement duc to the stresses. And we have
dAr _ dav + ot
dr dr 1)
.é?_: = éj_ + Oﬂtu
7 7

- where Ar is the total radial dlsplacement due to stress and temperature.
Therefore, we have

ddy 1 (d’? )2
gp=—— —uoif
dr o u+ dr

Ay
£i= """ —otly
p

375

The
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And we have

.. (9)

or

L (10)

Ar 1 1 )
; — o bt el
r K i m !

We liave the stresses in terms of strains as follows:

op= }"?1— (E;-—*—l“"ef,):—g—_‘ {(IAT +—11—é—?—~—oato(1+ -l— ((Zg>

- m 1___1: dr w7 m
n o
Y A 5 FAVY EN?
o= B (o d) B fBr ddar (0 1y, 1 (2
1 mn 1 0w m dr ms 2 de
m’ wm
(1)

16

Assuming the extensional siress o.=C, coust, as the first approximation, we

have %1 = and dlp_m_() , 1. e. this is the case of the hydrostatic pressure.
7 dr’
The second equation of (1) is
vag_“ (c “) B op=0 ceeeeen . (12)
dr dr

And the equations (10) lead to

23 Ljonea- 3B |

A 1 1 (18)
.
A _1(3 Do
7 E‘( m !
or
dar  Ar 1 (d? )”’
dr fr 2 Ndr (14)
And the equations (11) lead to
T.T' .
J— k:;_mo e (1B)
1t
i

“hi . Ar
This must be equal to a const. ; therefore we have — =const. On the

P

boundary r=u, we have Ar==0 for the wunyiclding support, or we have
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(ﬂ) =0 - AT_0 and we have
7 e : 7
O‘,-:O‘ti-—-—'E—Cﬂiu:O‘ f okt ma omm o te ae am oA 4 --(16)
1——
m
And from (18) we must have
“ dAr 1 rof dEY
od'r{ 2065’2:1 (17
Strictly speaking this is not fulfilled unless (%) is zero i.e. the deflection
dr

angle is very small, but as it will be seen in the afterwards that it is the
same order infinitesimal compared with the approximate value of £ when C
iz not large.

. . d cme e e .
From the equation (12) we have, on putting (pzm?—f“:w “meridian inclination’’
: dr

nt {1‘ -dj— (1‘(;)}} =hUp

dr 9
Fp 1 dy ( X8 1)
. Cp, 1dp ((_IC_IVg 0
o d,'r”+ ¢ dr D /7
(D) 1t C<O, put —%‘D-O:B2
Q+l@+(53_lﬂ)(p:0 O g £5))
dr” ¢ dy 7

Tis general solution is

Pp=AS (Br)+BY1(Br) oo (19D
We reject I as it tends to co at the origin.
As the boundary condition of the supported edye, we have
r=¢; M=—D {ﬁg'{" —1—2 +(1+l)g}=0
dr ~ mor ms I
and at the center #=0, @=0; this is satisfied of itself as J;(0)=0. The

above equation determines 4.

riﬁﬂ’(ﬁa)+%;éf‘—£§@+(l+i)f?:o
(+2)7 (307 . (o0)

A=

BIED+-E KBy AN (1-1) 7w
ML [ m

Ay J (Bay= —

Ba Jo (Be)+ds (Be)



376 Thermal Flexure of & Thin Plate Heated on one Surface.

1)@
1+-)=
( +fm I

8, (Ba)—f(lm—) T(Ba)

13

E:

fJ; (B1) dr+ ¢ l
The boundary condition £=0 at r=a¢ gives;

e R
8T, (Ba)— (1—;)‘11(8@) .

whence we have

. (1+14)2 Juﬁﬂ—Juﬁm}' 1)

- {1 1\ABa) { o
-JD(BQ) (1 m) B

This solution fails when J;{Ba) (1 )J‘ (Ba) =0.
m

Ba
the plate buckles; for example, if m=3, the smallest positive root is Ba=2.05

0~_52,12:_ 4.2025 (:Q)

h a* h

Our solution is good for the absolute wvalue of ( lsss than the above one.
When {C| is small, we have

With this value of B

JTBr=Jy(Ba) _ 1, (B B, (Ba¥ , (Ba) _
LB _82{1 1 tTe T (1 LY )}
I RN <
-ﬂ4(m 7%) 64(6" )+
_ANLBa_ B, B0 (4 1)1 _(Ba¥, (8a¥_
JE'(Ba)"(l m) Ba =1 4 T e1 T (1 m){Q 6 5%d }
1 1Y_ (Ba)® L3
92 (1+m) 16 (3+m)+
g=16 (a®~ 7%~ fz (=20 ? ..(28)
34—
824 " (Ba)
1+ L

m
It ¢ or 8 is very small neglecting 2nd order we have

(B d (Br J o (B
o le(ﬂT'Jfszf J (ﬁ?';d By _ !313
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f:%(az—o'g)%)- 20

This iz the same as obtained in my previous paper (loc. cit.) Here we will
see how far the condition (17) will be fulfilled.

fo (cl'))d Bf {71 (Br)}*d (Br)
BB | 56 (B _ . ..}“’ (@Y

(oY, s,

BB =— {" 413 | 46 1284
[ (Y ar=2 (" @rraca )—A'GS“

This is the same order in B8 as we have in the eguation (23). We may

assume this equals to zero if we are contented with the same order of
approximation as the value of £ shown by the eq. (24).
The Bending Moments are

8, (Be')né-(l—;%) T (B7) ) )

- Btrn(sa)u—(lw).n <6a>f
m
. 1 1
£ g+ (11 ) ten
ML::-(1+1)CIDD[1— mn 1“ ) ' : --{25)
m l B.In(ﬁco)n——(l—;)uﬂ(ﬁ&) [
[ m /
II/IN::
] RC .
vhere &=—"Y [C<0
where 5 7 [ ]
M. is not exactly zero except at r=aq.
The stresses due to the flexure _
AY Y
5Ju(/3e')—-l~(l—-l JEACD
E P mn 2D
oo — — 1 Oﬂ(i—in)-‘ 1 1> T
1-L 8 (80)~ (1= 1) (8
m m
8 e+ La-Lynwn ) ¢
E ct(t—tu)-— 7 m, ﬂf
1-‘i /3Jnf~mw_1_(1_+¢) i (Ba) Tj
m a N m
75 =0 7

(1) Watson: DBessel Function; p. §2-33.
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or is zero onl}'. when r=a and ®=a@T (where @:é*f“).
&

hC

(I} TIf C>0 or —2>0, we have

z P odr

760 Bz

on putting —==
D

Tis general solution is

@=ALB)+BEUBrY v

fP 1J(P (Bl 1)(}) 1

(28)

where T, (8r) and K, (8r) are the Modified Bessel Function of the First and

Second kind respectively.
We reject K; as it tends to oo at the origin.
At the center »=0, we have 9=0 as I, (0)=0.
As the boundary condition of the supporied edge, we have
M,=0 or- dfp—z— ? +(1+l)g)=0 at  r=a.
dr  m ¥ m/ I
This determines 4;

48T () L ALE) (1, 1) D g

_:_ _(;I? 1 (1)
4 (1+m I BT, (Ba )___(1—;];;)L(B@)
+ E
b (1 b . in (Br) d +C"

Al (ﬁa)—-v(l—é)rltﬁa)

The boundary condition £=0 at r=qa gives;

D
o ()T ne
I (g —(1- )& fi"’" &
_ 1\ D 1 I (Ba) — L (Br)
e=(1e )7 RVAF T S S
T (Ba)— 1—;1) b

. (29)

.-(30)

(1) (Ba)I,(Ba)=—1, (Ba)+Ba l, (Ba)

@ fl}(ﬁ'r)dr—'[r (Bryd {Br)_In(£r)
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a1

For the very small value of C or 8,

(Ba) (Ba)‘
I (Ba)=1+4-— ter T

I (Ba)y== Ba uETY (Ba)‘

D18 (af—?’ +!5" (e — %)
E_ \

T 5. L

8244 —--_’-;’-’ﬂaﬁ

1+
TR

This is the same with {23) and (24)
w
1\ 4(Ba) has no real root, hence we

The denominator I, (8a) (1
m! Ba

will not encounter with the failing case. For large value of € or 8, from

the agymptotic expansion of La, we have ~1—_-—1.

1 I8
} (8D

e=(1+ )7 i (1,__) 5 Fido

The center deflection ’g’u is as follows;

&=(1+%%)%1 (1_1f) - {%z_miﬁa)}..............(33)
m/ Be

Here if 8 iz very large, & tends to zero.

The Bending Moments are ' 7
. B en—~L(1-L)n@n | )
M_—(1+ )-_Dm o
; B ( BC()——(I———)L(BC&)
4] m
By 11—
M=_(1+l)ﬁ?p«1_mfvﬁr>+ ”’( )L ) (... .(34)
m/d Bl (Ba)— 1—--)11 (Ba)
(47N m

1) + (=g Josar+

% S (Bay +.

. (1 ANTL(Ba)_
(0 It m=3; I, e~ (1 m)
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.ZII;L':O

ne
where =" [(=0
vhere & > [ i

M. iz not exactly zero except at r=a:

The stresses due to the flexure are

. prign-{1-L)ren |
O—_,_:—l_ 1 "CC(t—io)“" ki3 o ’L_:I_
gons aTfa) (1= )rgw) |
A ‘ 1 y Y (35)
__ B E'—Io(ﬂfj}ﬁ--T(l W)Il(ﬁr} s ]
o 1 s (i - 10) - I
1-—- BI(B)—2(1- -1 ) £(8e) j
T =0 /

o, is not zero except for =@ and r=a.
(III) We have already shown that our assumption about the extensional

2 -
gtress iz only fulfilled on condition that (_@_@?_) is small, Our assumption re-

(uires, moreover, that g—g or % will be as small as to salisfy the first
P 7
fundamental equation of (1). We will try how far this condition will be pushed
forwards.
Take the approximate value of & as is shown by the eq. (24) or (81).
2
And we have 48 _ o LY and dE_ 2
’ (7 i dr* I
the first equation of (1) becomes
1d {,,‘_ff-_(iiq-ﬁ)}:_ﬁ?' e (36)
cde L odr Ny dr dr 1
The solution of this equation is
4
F=— —Eg—?—+A+Bq *+0 logr+ D' log #
I 64

. . . . . -
On condition that ¢, and o, are of hniie value at the origin, we have ¢=0
and D=0 and 4 is not necessary as far as the siresses are conicerned. And
we have

DDt 4 .
P EE T LB B)
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Therefore we have

Ty ar I 16
d*F E®* 3v* , .
=—"= — 4B
T I 16
E
If we have o,=0C=-— 1 aly at center r=o;
P
m
9B=—F ety
1
m

and we have the stresses

¢ 1
w=—E{ Tt e }
1__
m N =3
£ 1
O‘nz_-Ei ““1 +?—ﬁ3’r2 ]

1=
m /

If the temperature gradient is a straight line, ®=u®I; here @ shows ihe

gradient angle. And we have

¢ *®F
oy = — f{—HqUT"F’%—?'z l l

e (39)

Ifsthe gradient ® is not large as compared with £, the second terms of
the right hand members of the ahove equations will be negligibly small in
comparison with the first, and our assumption will be justified.

To obtain a more accurate expression of £, we proceed with successive
approximation. Taking the value of o, as shown by eq. (39), and putting

aF — {O-{- 0'7'2}9' [C"= Foi@ >0:1
dr 16

in the second equation of (1), we have
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dp , 1de__ 1 hC _hC )
e ldp 1, JAC M lgeg
at T ar 7 {D o7

Putting %=$Bz [take the above sign when <0 & the lower when C>0]
h ()r 2
and =
D i
d*p 1 de @ — 2 '_-\' .
LA L I
dr®* o dr  # e f
Z
or _d_q;+}_d¢)+($ﬁz+fy2¢2—j¢z—)(p=0 P ¢ 11}
dr r dr r

Assuming =24, ™, and putting it in the abov: eq. we have

(m2— 12k B4 4 i =0
Putting the first coef. =0, we have m=1. Therefore we have an odd power
series beginning with the term r' as a solution of eq. (40).
p=dAr+ dg*+ Ar* + A"+ ...

Substituting this in the above equation, we have

(324ﬂ+544%ﬁ+7@*%ﬁ+...”.) (A1+3Aﬂ51? FTAS - ”)

$BE(A11‘ + A+ A+ ... ) + fyz(Aﬂs—i- A+ A+ . )
( L Ayt A+ A+ ):o

Putting coefficients of different powers of r equal to zero, we have

B 2) . 1 i v 5 )
A=-L 4, A= _YBN4
ST ael\wa ) T T eg\eaas 6 /)

sl ) e Y )

Or dividing each term by o & putting 4d=ads

2
=T B
3 —%-2.4

(o af r V', /84 ! Mo N1/ "aF _ BN Y
pafrw () + N ) Tos\ 24 s N\ o/
+.}.”mnng”m“”m”“mnvm”“@m

‘We must have one more series to complete the solution.
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This latter series has, however, a singular point at the origin.™ Therefore we
take, in the present case, only the solution (41) or (42},

p=A%(r)
0 To obtain ancther particular solution in series, put p=ry in the eq. (40
d?p de
?'drz +1jj?—‘*{1+}3” 2—9":*‘] .................... Ceerenaas trreeieras RN )
It becomes

2 Ay
ar 2+3'.'—— (FR*r —gry) y

On puttmg again r*=x, we have

a2y
”EFJ’ w{+a. by [ ( _(__) ] .................... el (B)
Putling y=amn+ 4 amely 4, gmez in the above eq. and equating coeffs. of different

powers of x, we have
2
Jr_l-;-?x%(—_——) ?:F T ————3- ab):va-‘r ........

This is the same sclution with (41).

- If we know a particular solution y, of the linear homogeneons squation

a7y dy
“dzt ee TP gy dx tay=0
we obtain another solution by
dﬂ; _j'rxl):
=y, " —e [Goursat: Cours d’Anazlyse II. p. 433]
2
j‘ dx ¢ -f P
Y2=Ya _a ? b 1 o ] 3 2
1+-§-x+ (—12 —- —):c = ICLETIE ab)a, +J‘

n

=y1f"c%{1‘7“[iz'x:’:( ;> 6)3?-'_]2(___2_ “b)”a'“"“]}_
WEMENIET

e 1 oL )

i
=
L"}

5’ 5
* ('1
‘—‘L—\
|+

)

oot e o)
—ylf ~ !1iccx+[§gi—~2((;; ——z—)]x"’ }
=y1{_L+alogm + 2:1 a —-—-)]x}

The general solution of (B} is

y=dy{x)+By(z)
And that of (A) is
p=Ary,(r2)+ Brys(r?)
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8 ., 1 (&
Sy
od | 46 \ 24

here Fi(r)=»7F

- 0/2) PR

6-8

L (L~ )t 19

As the boundary condition of the suppo'rtcd edge, we have

| IL'[=-—D*8@+ L o +(1+ 1 )C_Il) }=0 at r=oa

or moor

and at the center »=0, ¢=0; the latter

7, (0)=0.
The former condition determines 4;

e

condition ig satisfied of iteelf as.

AT@) +—— AT () + ( 1+ J—)Emo
ma m s I

(1+i%)%?

A=— 1
V! (a) +—F(a)
ma

And as £=0 at r=g, we have

1\®
14— ) o
E= ( m)f @, (2)ds
¥ (0) +——Fila) |,
. n

4
As “I’l’('r) 1+-— 3 +-4%(—ﬁ———72) 7

9.4 2-4 63\ 2446 6
L Qi 1 & _ 1 BG 6272 s
Yr=-"TF 2 4 ( - 2)'6 ( - T+
Swdﬂq 5 T oaa | 466 \oa /) T 688 \24d6 6
We have .

1\ D 7 ,{’32 4 1 ([34 2) o 1 ( BG Bz,yn) s :r
1+ r . — Fo..
( mdAr{z 244 tes\aa 7/ T oss \gads 6 / ,

% 2 2. ¢ 4 2
{1728, ( - )co4+...}+i‘1:ﬁ_a+( L
6 ml . od \24db 46
1,5 o B 0 s 5 v ) 6.8
—(a*— ) F——a =7+ - T— )+
(o’=~+F 44(a ) 4468 466 (@’=1)

fo. 1Y@ 2 2
(s 1) 2
N @+—0B
vy m ] 24

9

1 ;& ¥ ) 4
OIS VAN N 20 Y N
(+mX2M6 28/

.. (46)

Neglecting 4th and higher orders of 8 and 2nd and higher orders of v;
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(o E_ T AT b
g 160 "‘)“'“Bl'”' 1_),%(44)
34—
8241t 5%
1+-1

70}
This is the same as eg. (23) or (31).
If we neglect, maoreover, 2nd and higher orders of 5 and v; we ghall return

to our original equation

=——(a*—1% A - 3

From this we see that the parabolic solution is approximately true either o,
is assumed to be constant throughout or it may be assumed as eq. (39).
In conclusion we see that the solution, which iz obtained on condition
" that o, is a constant throughout, is to be applied with sufficient approxi-

mation.

Tokyo, Feb. 1928.
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