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This paper presents a fundamental study of lging fluid by means of dam-break flow model. A
numerical model based on a two-dimensional freéasarVOF (Volume of Fluid) method is developed
to simulate the slump flow test of fresh concretel ased to verify the characteristic flow phases of
Bingham fluid. The advection terms in the Navieok&s equations are solved using CIP
(Cubic-Interpolated Propagation) scheme. The advedf VOF density functionk- is also solved with
CIP scheme. The reliability of the numerical modelerified with available experimental results of
slump flow test.
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1. INTRODUCTION

Dam-break flow model is a ubiquitous model
used in the study of shallow flow. The author v,

previously used dam-break flow of finite volume to
study the characteristic flow phases for viscous =
Newtonian and non-Newtonian fluid by deriving

similarity solution for the propagation of front
position and the depth of flow at the oriirin the 0 > 7
Ca.se)Of viscous fluid, ch'arac'terlstlc flow: phases Fig.1 Dam-break flow of finite volume in cylindrical
exis”. When the flow motion is governed by the coordinate svstem used in this stud
inertial of the flow, it is said that the flow i i Y 4
inertial flow phase. Consequently, when the ; ; C
. . . o case where the ratio of yield stress-plastic viggos
viscosity of the fluid becomes more dominant, thq y b g

f ¢ : f h h th i s less than 19 In this study, a numerical model
rlow enters a viscous tlow phase whereé the MolioRaqeq on the VOF method coupled with higher order
is governed by the viscous— pressure equilibFém

Based the d break f £ finit | scheme CIP, hereafter referred as VOF-CIP model
ased on the a”;‘; reax flow of Tinite VoIUme,,u e ysed to reproduce the slump flow test and
model, Kokado et 3¥ carried out studies on the

. . L Fharacteristic flow phases of Bingham fluid.
rheological properties and flow characteristics o
fresh concrete which was treated as a kind of
Bingham fluid. In the works of Kokado et*ala
numerical model based on the Marker and Ceﬁ' GOVERNING EQUATIONS
(MAC) method was used to simulate slump flow

. ... The slump flow test problem can be regarded as
test, and the numerical results were compared with .
. . an axis-symmetry flow problem. Therefore, the

results from experimental works. However, in some
cases it was reported that the numerical modelcou

not produce satisfactory results especially in the

lump flow test problem can be reduced to a
wo-dimensional dam-break flow of finite volume
shown inFig. 1 with its origin situated at the center
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of the slump flow. The motion slump flow in a Wz

two-dimensional model can be described by the A
following equation of motions,
Continuity equation: ) T —onfi
10 aUZ T,
—= +—=0 1
5, ) + o 1)
Momentum equation: V"Z:Z{n,ﬁ%_} I
ov, N 10(rv2) 0(v,v,) VL. _
ot r Or 0z o I > L
2 (2a) VL,
10P 17 [ 0 (1 B(rvr)> N 0 vr]
= 09 "ol \ - Ir
por plorir or 0z Fig.2 Bi-linear model used in the numerical model.

ov, 10Gorvy) | o(v7) Based on the constitutive relation in Eq. (3), Kaika
ot r or 0z (2b) et af’ proposed a bi-linear model for the numerical
__lop +ﬂ[li<l%> @] 4 model where the following relation between stress -
~ pdz plror\ror 97217 9z deviation tensorz’;; and second invariant strain

where v, is the velocity inr-direction, v, is the 'ate tensor, in Eq (5) holds. This bi-linear model
velocity in z-direction, r is the radius measured 'S @dapted in the numerical model in this study.

from the origin, p is the density of the fluidy is Ty .
the viscosity of the fluid,g, and g, are gravity 2<77m +ﬁ> ey for \/]_2 > Ty
acceleration components in and r directions T = 2 (5)
respectively andP is pressure. Ty 7
P y P 2<npl+ﬁ>eij for \/]—ZS‘L'y
3. NUMERICAL SIMULATION OF The second invariant strain rate tenggris ,
SLUMP FLOW TEST

1
I, = > (erzr +ebg + eZZZ) +e?t+el, +e2 (6)

ﬂOWTtheestng?qf?QgslCrgﬁgf:tgsgdt};’:;énglstﬁ];hgsllgn”:?zc is the critical value of second invariant strain
of Fluid (VOF) methof. The governing equations ate tensor which is used to the determine theeslop

i . - i
for the numerical model are the continuity anoOf Ilne_ OA inFig. 2._The value offy, = 0.03s" is
momentum equations in cylindrical coordinateused in the numerical model based on the works of

; Kokado et &. It can be seen frorfig. 2 that the
system as in Eqg. (1), (2a) and (2b). o ) ) ) .
y In Ea. (1), (28) (2b) bilinear model is used because without introdueing
(1) Congtitutiverelations of Bingham fluid second linear line OA, the value qff; cannot be

The constitutive relations for Bingham fluid determined in the case wherg]; <1, which
based on the extension by Hohenemser and Praggjyses problem in numerical simulation.
in arbitrary stress staecan be written as follows:  The total stressg;; in the equation of motion is,

0 for \/]_é < Ty gij = —pé'ij + T,ij
28 = T 3 = —pd:; + 2ne;;
77pl ij <1 __y,>ng for \/]_é> Ty ( ) . p ij n ij .
\/]_2 where §;; is the Kronecker delta. By comparing

where 7/;is the stress-deviation tensofy, is the Eq. (7) with Eq.(5), we can expressed the viscosity

plastic viscosity,e;; is the strain rate tensor ang n as follows,

is the yield stressj; is the second invariant of Ty
iati i —— i L > |1
stress-deviation tensor defined as follows, (”pl + 2\/3 or \/_2 2¢

n= 7, (8)
tT]pl +TE for \/ES\/ZC

In the numerical model, the second invariant strain

rate I, is calculated using Eq. (6) and used to
determine the viscosity expressed in Eq. (8).

(7)

1
]é ZE(T;TZ +Té92 +Tézz) (4)
+T;92 + rézz + T;rz
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(2) Numerical mode
The numerical simulation of slump flow test ofg + Urg + vzg =—f <la(rvr) + %) (12)
fresh concrete is carried out using the Volume oft or 0z r o or  0dy

Fluid (VOF) method by Hirt et 8l The advection The left hand side of Eq. (12) is the advectiomter
terms in the momentum equations of Eq. (2a) angnq the right hand side is the non-advection term.
(2b) are solved using CIP scheme which is a lespherefore, Eq. (12) can be solved using the method

diffusive, higher order scheme. In the advection ofentioned above for momentum equation, where it
VOF density functior, CIP scheme is used as wellis solved in two stages: the non-advection stage an
instead of the conventional donor-acceptor method agvection stage. In order to improve the

a) CIP Scheme performance of the advection of the VOF density
A two-dimensional solver CIP scheme can bgynction F, especially in maintaining sharp surface,
used to solve the advection equation of thg gigitizer functiof of the following form is used,

following form”, . ] ) 12
=t 0.8 F —0.

FrRLr Vay " 0 (9)  Instead of directly using® value, h value is used

in the CIP solver, and the new value lofafter

The advection terms in Eq. (2a) and (2b) can bgdvection is inversed to obtain the new valug-of
solved using the two-dimensional solver of ClPas in the following equation,

scheme. However, the advection terms in Eq.(2a)

and (2b) need to be re-arranged before CIP scheme F = 1 tan~Th+ 0.5 (14)
can be used. Taking Eq. (2a) as an example, the 0.85m

conservative form of the advection term can be

reduced to the form of Eq. (9) by using continuity(3) Simulation conditions

equation in Eq. (1) as follows, a) Numerical model setup
The cell size in the radial directionr and

ov, 10(rvy) | 9(n,) vertical direction Az are set as 5mm in each
ot r or 0z direction. Time incrementAt is set as1.0 x
_ove ov Ov,  |10Gw) 0w, (10) 107%s and adjusted for stability based on the

at  Toar Zaz  "|r or ' oz following criteria,

av, av, av,
=5t tug, At < min ‘L“L] (15)
The same method applies to the advection term in oy 1V
Eq. (2b) where it can be reduced to the form of Eq. 1 Ar?Ag?
(9) by using continuity equation of Eq. (). At < = —————— (16)
However, CIP method cannot be used directly to 2Ar% + AZ?

solve the advection equations in momentum : :
equations of Eq. (2a) a%d (2b) because of th\ghere v”f.and vz are velocityly and V; in cell
non-advection terms on the right hand side of the 'espectively. -

equations (the viscosity, pressure and gravity) Boundary conditions L
acceleration term). The method to solve the '€ vertical axis at the origin is set as
advection terms with CIP scheme in the presence gfiP-condition representing the condition at the
non-advection terms is explained in referéhce8XiS-Symmetry axis in the actual slump flow test.

where these equations are solved in two stages: th@€ Pottom floor is set as non-slip conditions. The
non-advection stage and advection stage. slump cone wall effect is included in the simulatio

The two-dimensional CIP solver is used to solv&Y Setting non-slip condition along the cone wall.
the advection of VOF density functioft as well. | e pulling rlate Ofkthg CO}Qek'S d40mﬁ?§|sﬁd onI'Fhe
Instead of the non-conservative form Bffunction expg_rl_mer_lta V\]ﬁor h y Roka I(I) et on-siip
used in the original VOF methddthe following con _'t_'gln IS Ze_zt_ ort edclfl’ne W‘Z_'
conservative form in cylindrical coordinate systenf) !Nitial conditionsand flow radius

is used measur ement
’ The initial shape of the fresh-concrete slump is
af  10(0rv.f)  0(W.f) 0 (11) Shown inFig. 3. A5mm or 1 cell opening is present
E'i_? or + dz at the beginning of the numerical simulation. The

agosition of the front of the slump, which is called
the flow radius in this study, is measured in the
numerical simulation.

Eqg. (11) is re-arranged to the form of Eq. (9)
follows,

- 1179 -



z (m)

035 Table 1 Rheological property for numerical simulation cases

1 °° Exp no p Ty Nt
1025 (kgm™3) (Pa) (Pa.s)
| o MO025-1 2187 112 44
1 M025-2 2187 72 43
‘ 101 M30-1 2237 121 60
conewall 1 on M30-4 2237 34 28
postiion M30-7 2237 10 21
LSmm 1°* [wm351 2187 102 33
. o.‘15 0‘42 0.‘25 c;.s 0.35 0 M35-2 2187 106 18
. r(m) M35-4 2187 32 15
Fig.3 Initial condition of slump flow in numerical M35-6 2187 15 11
simulation. M35-7 2187 12 9.8
005 ' ' ' ' M40-3 2140 10 4.7
ol t=0.3s ] MO050-4 2187 35 53
MO050-6 2187 24 42
ozer 1 MO050-7 2187 11 33

the wall is pulled up. The performance of the
VOF-CIP model in this study is compared with the
experimental and MAC model results carried out by
Kokado et df as shown irFig. 5a to Fig. 5¢c. Three

025 03 035 cases showing different degree of agreement
between numerical models and experimental results
are shown. It can be seen that the VOF-CIP model
performed better than the MAC model in the case
where the ratio ofy/t, < 1.0 as inFig. 5 a). This
overcomes the problem reported by Kokado 8t al
that the MAC model performance was
unsatisfactory for cases withy/t, < 1.0. However,

the MAC method performed better when the ratio
i n/ty > 1.0 as inFig. 5 b). The VOF-CIP model

0 005 01 015 o0z 025 03 035 matched the experimental result better compared to
the MAC model as irFig. 5 ¢). Due to the lack of
data from the MAC model, it is hard to conclude

As measurement of flow radius starts as soon as tifeat one model is more reliable than the other one
cone is lifted in the experimental work, time i¢ t&e based on the comparison of three cases only. The

zero when the flow radius reaches 110mm in bot OF-CIP model is ‘used to reproduce the
numerical model and experimental work. Thischarag:tensﬂc_flow phases of Bingham fluid in the
overcomes the discrepancy between the numerici!loWing section.
model (due to the initial 5mm opening) and
experimental works.
d) Rheological properties 4. CHARACTERTISTIC FLOW PHASES
In order to compare the numerical simulation INBINGHAM FLUID
results with the experimental work of slump flow
test carried out by Kokada ef’akimilar rheological In the study of Hosoda et”althe Bingham fluid
properties of fresh concrete are used. Theharacteristic flow phases are derived in terms of
rheological properties used in the numericapower-law solutions based on the assumption of
simulations are summarizedTrable 1. self-similarity in the inertial and viscous flow
€) Results and performance of numerical model phases by using the dam-break flow of finite volume
The simulation of slump flow test for case M35-7model. The model of study was based on the
is shown inFig. 4. The effect of the cone wall following depth averaged model in cylindrical
pulling can be seen where the fresh concrete near coordinate system,

Fig.4 Simulation of slump flow test for case M35-7
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with h as the depth of flowlU, as the depth
averaged flow velocity inrdirection, f§ as the
momentum coefficient assumed #s=1 and g

as the gravity acceleration. Through the assumptiofll"lO

of self similarity, the depthh(r,t) and flow
velocity U, (r,t) were expressed by the similarity

functions p(r/L) and q(r/L) in the analysis as
follows,

h=hn(©p(7) (19)

Up = Un(t)q (%) (20)

The functionh,, and U,, and front position of the
flow L were expressed as follows,

hy = athy(\Jg/hot)" (21)
Un = B0 (o hot)” (22)
L =yLo(Jg/hot) (23)

where a, B,v,a, b, c are dimensionless coefficients,
h, andL, are the initial depth and width of the dam
respectively. The solutions of the coefficiemtb, ¢
were found by equating pressure term with inertial
term for inertial flow phase and pressure term with
viscous term for viscous flow phase. The results
relating to the propagation of flow front positibn

is used to verify the characteristic flow phases of
numerical model in this study. The solution for
coefficient ¢? relating to the propagation of the
flow front position is summarized as follows,

¢ = 1/2 for inertial phase flow (24)

¢ = 1/8 for viscous phase flow (25)

(1) Verification of characteristic flow phases
The flow radius propagation is plotted in three

extreme cases where the yield stress is relatively
low, mild and high inFig. 6 a), b) and c)
respectively. Low yield stress cases are MC050-7,
MC30-7, MC35-7 and MC40-3. Mild yield stress
cases are MCO050-4, MC030-4 and MC35-4. High
yield stress cases are MC30-1, MC025-1, MC35-1
and MC35-2. In each case, two distinct flow phases
can be observed. In the inertial phase flow, the
characteristic of inertial flow can be observed in
case where the yield stress is relatively low and
mild. In the case of relatively high yield stretize
inertial flow characteristic is not distinct. Aseth
yield stress acts as a threshold for the flow to be
initiated, it is thought that in the case of lowdan
mild yield stress, flow is easily initiated and the
characteristic of flow phases are similar to viscou
Newtonian fluid where inertial flow phase is
dominant in low viscosity case and viscous flow
phase is dominant in higher viscosity case

It is thought that in high yield stress casés, t
w could not be initiated immediately and a pafrt
the inertia of the flow is used to overcome thddyie
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MC050-7 1,=11.0 Pa, n=33.0 Pa.s
MC30-7_7,510.0 Pa, n=21.0 Pa.s ———-
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Fig. 6a Characteristic regions shown for front propagatibn
slump flow for relatively low yield stress cases.

MC050-4 7,=35.0 Pa, n=53.0 Pa.s
MC30-4 1,=34.0 Pa, n=28.0 Pa.s ———-
MC35-4 1,=32.0 Pa, n=15.0 Pa.s ---------

E

3

2

s

=
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1
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Fig. 6b Characteristic regions shown for front propagatién
slump flow for relatively mild yield stress cases

stress before the flow is initiated. Therefore the
inertial flow phase is not distinct and the slope i
less than1/2 in the initial range and thereafter 4

Flow radius (m)

0.1 1 10
t(s)
Fig. 6c Characteristic regions shown for front propagatibn
slump flow for relatively high yield stress cases

model was later used to verify the characteristic
flow phases in Bingham fluid. It was shown that the
model could reproduce the characteristic flow
phases of Bingham fluid.
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