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    This paper presents a fundamental study of Bingham fluid by means of dam-break flow model. A 
numerical model based on a two-dimensional free-surface VOF (Volume of Fluid) method is developed 
to simulate the slump flow test of fresh concrete and used to verify the characteristic flow phases of 
Bingham fluid. The advection terms in the Navier-Stokes equations are solved using CIP 
(Cubic-Interpolated Propagation) scheme. The advection of VOF density function, F is also solved with   
CIP scheme. The reliability of the numerical model is verified with available experimental results of 
slump flow test.  

 

Key Words: Bingham fluid, dam-break flow, CIP scheme, slump flow test 

 

 
1. INTRODUCTION 

 
Dam-break flow model is a ubiquitous model 

used in the study of shallow flow. The author 
previously used dam-break flow of finite volume to 
study the characteristic flow phases for viscous 
Newtonian and non-Newtonian fluid by deriving 
similarity solution for the propagation of front 
position and the depth of flow at the origin1). In the 
case of viscous fluid, characteristic flow phases 
exist2). When the flow motion is governed by the 
inertial of the flow, it is said that the flow is in 
inertial flow phase. Consequently, when the 
viscosity of the fluid becomes more dominant, the 
flow enters a viscous flow phase where the motion 
is governed by the viscous– pressure equilibrium1),2).  

Based on the dam-break flow of finite volume 
model, Kokado et al3),4) carried out studies on the 
rheological properties and flow characteristics of 
fresh concrete which was treated as a kind of 
Bingham fluid. In the works of Kokado et al4), a 
numerical model based on the Marker and Cell 
(MAC) method was used to simulate slump flow 
test, and the numerical results were compared with 
results from experimental works. However, in some 
cases it was reported that the numerical model could 
not produce satisfactory results especially in the   

 

    
Fig.1 Dam-break flow of finite volume in cylindrical  

         coordinate system used in this study. 
 
case where the ratio of yield stress-plastic viscosity 
is less than 1.04). In this study, a numerical model 
based on the VOF method coupled with higher order 
scheme CIP, hereafter referred as VOF-CIP model 
will be used to reproduce the slump flow test and 
characteristic flow phases of Bingham fluid.  
 
 
2. GOVERNING EQUATIONS 
 
   The slump flow test problem can be regarded as 
an axis-symmetry flow problem. Therefore, the 
slump flow test problem can be reduced to a 
two-dimensional dam-break flow of finite volume 
shown in Fig. 1 with its origin situated at the center 



 

 

of the slump flow. The motion slump flow in a 
two-dimensional model can be described by the 
following equation of motions, 
Continuity equation: 

 1� ��� ����� � ��	�
 � 0 (1) 

Momentum equation: 

 ����
 � 1� ��������� � �����	��
 � � 1� ���� � �� � ��� �1� �������� � � �����
� � � ��  (2a) 

 ��	�
 � 1� ������	��� � ���	���
 � � 1� ���
 � �� �1� ��� �1� ��	�� � � �����
� � � �	  (2b) 

where �� is the velocity in r-direction, �	 is the 
velocity in 
-direction, � is the radius measured 
from the origin, � is the density of the fluid, � is 
the viscosity of the fluid,  �	 and �� are gravity 
acceleration components in 
  and �  directions 
respectively and � is pressure. 
  
 
3. NUMERICAL SIMULATION OF 

SLUMP FLOW TEST 
 

   The numerical model used to simulate the slump 
flow test of fresh concrete is based on the Volume 
of Fluid (VOF) method5). The governing equations 
for the numerical model are the continuity and 
momentum equations in cylindrical coordinate 
system as in Eq. (1), (2a) and (2b). 
 
(1) Constitutive relations of Bingham fluid 
   The constitutive relations for Bingham fluid 
based on the extension by Hohenemser and Prager 
in arbitrary stress state6) can be written as follows: 

 2��� !" �  # 0                     for   '(�) * +,�1 � +,'(�) � +!")    for   '(�) - +, . (3) 

where +!" ) is the stress-deviation tensor, ���  is the 
plastic viscosity,  !" is the strain rate tensor and +, 
is the yield stress. (�)  is the second invariant of 
stress-deviation tensor defined as follows, 

(�) � 12 /+��) � � +00) � � +		) �1                         �+�0) � � +0	) � � +	�) �           
(4) 

 
 

Fig.2 Bi-linear model used in the numerical model. 
 
Based on the constitutive relation in Eq. (3), Kokado 
et al4) proposed a bi-linear model for the numerical 
model where the following relation between stress - 
deviation tensor, +2!"  and second invariant strain 
rate tensor 3� in Eq (5) holds. This bi-linear model 
is adapted in the numerical model in this study.  

+2!" �  
456
572 ���� � +,2'3��  !"     for   '(�) - +,

2 ���� � +,2'3�8�  !"    for   '(�) * +,
. (5) 

The second invariant strain rate tensor 3� is , 

3� � 12 9 ��� �  00� �  		� : �  �0� �  0	� �  	0�  (6) 

3�8 is the critical value of second invariant strain 
rate tensor which is used to the determine the slope 
of line OA in Fig. 2. The value of 3�8 � 0.03=>? is 
used in the numerical model based on the works of 
Kokado et al4). It can be seen from Fig. 2 that the 
bilinear model is used because without introducing a 
second linear line OA, the value of 'J�)  cannot be 

determined in the case where 'J�) A τC  which 
causes problem in numerical simulation.  
The total stress, D!" in the equation of motion is, 

  D!" � �EF!" � +2!" � �EF!" � 2� !" 
(7) 

where F!"  is the Kronecker delta. By comparing 
Eq. (7) with Eq.(5), we can expressed the viscosity � as follows, 
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. (8) 

In the numerical model, the second invariant strain 
rate 3� is calculated using Eq. (6) and used to 
determine the viscosity expressed in Eq. (8). 
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(2) Numerical model 
   The numerical simulation of slump flow test of 
fresh concrete is carried out using the Volume of 
Fluid (VOF) method by Hirt et al5). The advection 
terms in the momentum equations of Eq. (2a) and 
(2b) are solved using CIP scheme which is a less 
diffusive, higher order scheme. In the advection of 
VOF density function I, CIP scheme is used as well 
instead of the conventional donor-acceptor method. 
a) CIP Scheme 
  A two-dimensional solver CIP scheme can be 
used to solve the advection equation of the 
following form7), �J�
 � K �J�L � � �J�M � 0 (9) 

The advection terms in Eq. (2a) and (2b) can be 
solved using the two-dimensional solver of CIP 
scheme. However, the advection terms in Eq.(2a) 
and (2b) need to be re-arranged before CIP scheme 
can be used. Taking Eq. (2a) as an example, the 
conservative form of the advection term can be 
reduced to the form of Eq. (9) by using continuity 
equation in Eq. (1) as follows, 
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(10) 

The same method applies to the advection term in 
Eq. (2b) where it can be reduced to the form of Eq. 
(9) by using continuity equation of Eq. (1). 
However, CIP method cannot be used directly to 
solve the advection equations in momentum 
equations of Eq. (2a) and (2b) because of the 
non-advection terms on the right hand side of the 
equations (the viscosity, pressure and gravity 
acceleration term). The method to solve the 
advection terms with CIP scheme in the presence of 
non-advection terms is explained in reference7) 
where these equations are solved in two stages: the 
non-advection stage and advection stage.  
  The two-dimensional CIP solver is used to solve 
the advection of VOF density function I as well. 
Instead of the non-conservative form of I function 
used in the original VOF method5), the following 
conservative form in cylindrical coordinate system 
is used, �J�
 � 1� �����J��� � ���	J��
 � 0 (11) 

Eq. (11) is re-arranged to the form of Eq. (9) as 
follows,  

�J�
 � �� �J�� � �	 �J�
 � �J �1� �������� � ��	�M � (12) 

The left hand side of Eq. (12) is the advection term 
and the right hand side is the non-advection term. 
Therefore, Eq. (12) can be solved using the method 
mentioned above for momentum equation, where it 
is solved in two stages: the non-advection stage and 
advection stage. In order to improve the 
performance of the advection of the VOF density 
function  I, especially in maintaining sharp surface, 
a digitizer function8) of the following form is used, N �  tan  R 0.85U�I � 0.5�V   (13) 

Instead of directly using I value, N value is used 
in the CIP solver, and the new value of N after 
advection is inversed to obtain the new value of I 
as in the following equation, 

I � 10.85U 
WX>? N � 0.5 (14) 

 
(3) Simulation conditions 
a) Numerical model setup 
  The cell size in the radial direction Δ� and 
vertical direction Δ
 are set as 5mm in each 
direction. Time increment Δt  is set as 1.0 Z10>[s  and adjusted for stability based on the 
following criteria5), 

]
 A ^_X � ]�|��ab| , ]
|�	ab|� (15) 

�]
 A 12 ]�� ]
�]�� �  ] 
�    (16) 

where ��ab and �	ab are velocity d� and d	 in cell _e respectively.  
b) Boundary conditions 
  The vertical axis at the origin is set as 
slip-condition representing the condition at the 
axis-symmetry axis in the actual slump flow test. 
The bottom floor is set as non-slip conditions. The 
slump cone wall effect is included in the simulation 
by setting non-slip condition along the cone wall. 
The pulling rate of the cone is 40mms-1 based on the 
experimental work by Kokado et al4). Non-slip 
condition is set for the cone wall.  
c) Initial conditions and flow radius  
  measurement 
  The initial shape of the fresh-concrete slump is 
shown in Fig. 3. A 5mm or 1 cell opening is present 
at the beginning of the numerical simulation. The 
position of the front of the slump, which is called 
the flow radius in this study, is measured in the 
numerical simulation.  



 

 

 
Fig.3 Initial condition of slump flow in numerical  

         simulation. 
 

 
Fig.4 Simulation of slump flow test for case M35-7 

 
As measurement of flow radius starts as soon as the 
cone is lifted in the experimental work, time is set to 
zero when the flow radius reaches 110mm in both 
numerical model and experimental work. This 
overcomes the discrepancy between the numerical 
model (due to the initial 5mm opening) and 
experimental works. 

d) Rheological properties 
  In order to compare the numerical simulation 
results with the experimental work of slump flow 
test carried out by Kokada et al4), similar rheological 
properties of fresh concrete are used. The 
rheological properties used in the numerical 
simulations are summarized in Table 1.  
e) Results and performance of numerical model 
  The simulation of slump flow test for case M35-7 
is shown in Fig. 4. The effect of the cone wall 
pulling can be seen where the fresh concrete near  

Table 1 Rheological property for numerical simulation cases. 
 

Exp no �  �f�^>g� 
+,  ��W� 

���  ��W. =� 
M025-1 2187 112 44 
M025-2 2187 72 43 
M30-1 2237 121 60 
M30-4 2237 34 28 
M30-7 2237 10 21 
M35-1 2187 102 33 
M35-2 2187 106 18 
M35-4 2187 32 15 
M35-6 2187 15 11 
M35-7 2187 12 9.8 
M40-3 2140 10 4.7 
M050-4 2187 35 53 
M050-6 2187 24 42 
M050-7 2187 11 33 

 
the wall is pulled up. The performance of the 
VOF-CIP model in this study is compared with the 
experimental and MAC model results carried out by 
Kokado et al4) as shown in Fig. 5a to Fig. 5c. Three 
cases showing different degree of agreement 
between numerical models and experimental results 
are shown. It can be seen that the VOF-CIP model 
performed better than the MAC model in the case 
where the ratio of  η/τC A 1.0 as in Fig. 5 a). This 
overcomes the problem reported by Kokado et al4) 
that the MAC model performance was 
unsatisfactory for cases with  η/τC A 1.0. However, 
the MAC method performed better when the ratio η/τC  - 1.0 as in Fig. 5 b). The VOF-CIP model 
matched the experimental result better compared to 
the MAC model as in Fig. 5 c). Due to the lack of 
data from the MAC model, it is hard to conclude 
that one model is more reliable than the other one 
based on the comparison of three cases only. The 
VOF-CIP model is used to reproduce the 
characteristic flow phases of Bingham fluid in the 
following section.  
   

 
4. CHARACTERTISTIC FLOW PHASES 

IN BINGHAM FLUID 
 

  In the study of Hosoda et al9), the Bingham fluid 
characteristic flow phases are derived in terms of 
power-law solutions based on the assumption of 
self-similarity in the inertial and viscous flow 
phases by using the dam-break flow of finite volume 
model. The model of study was based on the 
following depth averaged model in cylindrical 
coordinate system, 



 

 

 
Fig. 5a Flow radius for case M35-6 for VOF-CIP and MAC 

model and experimental works by Kokado4)   

 
Fig. 5b Flow radius for case M050-6 for VOF-CIP and MAC 

       model and experimental works by Kokado4) 

 
Fig. 5c Flow radius for case M025-2 for VOF-CIP and MAC 

       model and experimental works by Kokado4) 

 �N�
 � 1� ���N�j���� � 0 (17) 

��Nj���
 � 1� ���kN�j����� � �N �N�� � � 3j�N ��  (18) 

with N  as the depth of flow, j�  as the depth 
averaged flow velocity in � direction, k  as the 
momentum coefficient assumed as k � 1 and � 
as the gravity acceleration. Through the assumption 
of self similarity, the depth N��, 
�  and flow 
velocity j���, 
� were expressed by the similarity 

functions E��/l� and m��/l� in the analysis as 
follows, N � Nn�
�E /�l1 (19) 

j� � jn�
�m /�l1 (20) 

The function Nn and jn and front position of the 
flow l were expressed as follows, Nn � oNp9'�/Np
:q   (21) 

     jn � k'�Np9'�/Np
:r
 (22) 

 l � slp9'�/Np
:H
 (23) 

where α, β, γ, W, w, x are dimensionless coefficients, Np and lp are the initial depth and width of the dam 
respectively. The solutions of the coefficient W, w, x 
were found by equating pressure term with inertial 
term for inertial flow phase and pressure term with 
viscous term for viscous flow phase. The results 
relating to the propagation of flow front position l 
is used to verify the characteristic flow phases of 
numerical model in this study. The solution for 
coefficient x 9) relating to the propagation of the 
flow front position is summarized as follows, x � 1/2  for inertial phase flow (24) 

x � 1/8  for viscous phase flow (25) 

(1) Verification of characteristic flow phases  
   The flow radius propagation is plotted in three 
extreme cases where the yield stress is relatively 
low, mild and high in Fig. 6 a), b) and c) 
respectively. Low yield stress cases are MC050-7, 
MC30-7, MC35-7 and MC40-3. Mild yield stress 
cases are MC050-4, MC030-4 and MC35-4. High 
yield stress cases are MC30-1, MC025-1, MC35-1 
and MC35-2. In each case, two distinct flow phases 
can be observed. In the inertial phase flow, the 
characteristic of inertial flow can be observed in 
case where the yield stress is relatively low and 
mild. In the case of relatively high yield stress, the 
inertial flow characteristic is not distinct. As the 
yield stress acts as a threshold for the flow to be 
initiated, it is thought that in the case of low and 
mild yield stress, flow is easily initiated and the 
characteristic of flow phases are similar to viscous 
Newtonian fluid where inertial flow phase is 
dominant in low viscosity case and viscous flow 
phase is dominant in higher viscosity case1).  
   It is thought that in high yield stress cases, the 
flow could not be initiated immediately and a part of 
the inertia of the flow is used to overcome the yield 
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Fig. 6a Characteristic regions shown for front propagation of  

 slump flow for relatively low yield stress cases. 
 

 
Fig. 6b Characteristic regions shown for front propagation of  

  slump flow for relatively mild yield stress cases. 
 

stress before the flow is initiated. Therefore the 
inertial flow phase is not distinct and the slope is 
less than 1/2 in the initial range and thereafter 
followed by a distinct viscous flow phase. In the 
case of low yield stress, the slope is approaching to 
zero with the increase of time. It is thought that this 
represents the slowing down of the flow due to yield 
stress and the flow will finally reach a static state of 
pressure-yield stress balance.  
    
 
8. CONCLUSION  
 
   In this study, a numerical model was developed 
to simulate the phenomena of slump flow test of 
fresh concrete. The numerical model performance 
was verified by comparing the numerical simulation 
results with the available experimental works. It was 
shown that the model could simulate the slump flow 
satisfactorily especially in the case where the ratio 
of  η/τC is less than 1.0. However, in some cases 
the performance of the model was weaker. The 
author hopes to improve the numerical model 
performance by reconsidering the constitutive 
relations of Bingham fluid used in this study. The 

 
Fig. 6c Characteristic regions shown for front propagation of  

  slump flow for relatively high yield stress cases. 
 
model was later used to verify the characteristic 
flow phases in Bingham fluid. It was shown that the 
model could reproduce the characteristic flow 
phases of Bingham fluid.  
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