礫床河川において洪水中に発生した橋脚の 沈下原因の究明および対策工の研究 CAUSE OF SUBSIDENCE OF A BRIDGE PIER DURING A FLOOD IN A GRAVEL-BED RIVER AND ITS PROTECTION WORK

石野和男¹・楳田真也²・前野詩朗³・玉井信行⁴ Kazuo ISHINO, Shinya UMEDA, Shiro MAENO and Nobuyuki TAMAI

1正会員 工博 大成建設㈱技術センター 主事(〒245-0051 横浜市戸塚区名瀬町344-1)
 2正会員 博(エ) 金沢大学理工研究域環境デザイン学系 講師(〒920-1192金沢市角間町)
 3正会員 工博 岡山大学環境理工学部環境デザイン工学科 教授(〒700-8530岡山市津島中)
 4フェロー会員 工博 金沢学院大学大学院 教授 (〒920-1392 金沢市末町10)

In the Sakawa River, one of the piers of Jumonji Bridge subsided by about 2.7m during the heavy flood caused by the typhoon 9th in 2007. To clarify causes of this type of pier destruction and propose effective protection works are very important because many brigde piers are constructed on gravel-bed in Japan. There upon, the numerical study on the flood flow and seepage flow around the pier foundation was conducted to identify cause of the subsidence and to suggest its protection work. The results showed that the pier was subject to strong current leading to deep scour and that the suction of sediment from the pier base probably occurred due to the strong seepage flows exceeding threshold of the velocity for rubble foundations. The scour protection work for the pier foundations with shallow depth of embedment was suggested as an effective countermeasure against the pier subsidence in a gravel-bed river.

Key Words : Pier subsidence, gravel-bed river, local scour, seepage flow, suction of sediment scour protection work, numerical simulation of flood

1. はじめに

2007年9月の台風9号災害では、今までに観測例が少な く研究例が見られない洪水中の橋脚の沈下現象が、神奈 川県西部の酒匂川に架かる十文字橋の橋脚で発生した. 本研究は礫床河川における橋脚の沈下原因を探り、その 対策工を立案することを目的としている.本研究では, 平面2次元流の数値解析を行い,河道内に発生する速度 場,水面形状を再現した.それを元に橋脚周辺では2次 元計算を行って細部の流れ場を分析した. さらに, 水面 形状等に起因して礫層内に発生する浸透流速の計算を 行った. 洪水時の流れは変動成分を含むので、適切な設 定により変動流速を求め、変動成分に基づく礫層内の速 度の増加分を解析した. これらを明石海峡大橋基礎を念 頭に置いた大規模実験結果から得られた移動限界流速と 比較し、橋脚基礎の下部地盤における土砂の吸い出し現 象を考察した.また、砂の移動限界深さと橋脚の根入れ の比較による沈下の原因究明を行い対策工を提案した.

2. 十文字橋上下流の河相と被災要因

十文字橋は、酒匂川の10.7km地点に位置し、約500m 下流に下ると十文字床止を経て川音川が左岸側から合流 している. 左支川川音川が合流した後には, 2.6km地点 で右支川狩川が合流するまでの約7.5kmの区間はほぼ直 線的な河道である。狩川が合流する付近で小さく左に湾 曲し、相模湾に流れ込んでいる. 十文字橋は大きな湾曲 の終端付近に位置し、十文字橋から狩川が合流するまで の区間はほぼ直線的な河道で典型的な単列砂礫州が形成 されている. 砂礫州が形成され, 維持されている河道で は、上流から移動してくる砂礫が砂礫州の区間に供給さ れ、直線部分では砂州が徐々に下流へ移動することが知 られている.砂州の形状を定める支配的な流量は年に一 度の洪水規模であることから,これより大きな規模の出 水では砂州の移動が生じると考えられる. 2007年9月の 台風9号による出水は10年に一度の規模と推定されてい るから、砂州が移動、変形したと考えるのが妥当である. 礫床河川ではこうした土砂の移動により,巨礫の間に空 洞が生じ,浸透水の水みちが出来るとそれが発達し,多 孔媒体内の流れとは比較にならない大きな流速が生じ, 構造物基礎の沈下・倒壊・流出,引いては構造物本体の 破壊を引き起こすことが懸念されることになる.

3. 現地調査結果

図-1 に十文字橋平面図・側面図¹⁾を示す.図-1 に示 す橋梁の形状および平面図のP3~P6の橋脚周辺の護床工 は、被災前の状況を示す.なお、河床面は被災後に測量 した値である.このように、被災したP5橋脚の基礎は、 砂礫上に設置された直接基礎である.

図-2 に被災した十文字橋P4, P5橋脚の被災状況側面 図¹⁾を示す.図-2 中の赤い実線は被災後の測量値を, 赤い破線は神奈川県等が推定した最大洗掘深の推定値を 示す.また, P5橋脚が約2.69m沈下し,下流に1.22m移 動した.

図-3 に被災後に調査したP4橋脚の基礎の設置状況平 面図¹⁰を示す.図-3 中の赤い部分は洗掘により基礎下 が空洞になった部分を,グレー部分は基礎が砂礫面に接 地している部分を示す.このように、P4橋脚の上流左岸 側の全基礎平面積の約1/4部分は空洞になったが,沈下 等の変状はみられなかった.

P4橋脚基礎の根固めブロックは下流左岸側のブロック を除いて流失した.また,P5橋脚基礎の根固めブロック は総て流失した.

図-3 中の、グレーの基礎が砂礫面に接地している部 分が洗掘を受けなかった要因は、下流左岸側のブロック が流失せずに洗掘を防いだことが挙げられる.沈下した P5橋脚の中央部で被災後に実施されたボーリング地質 調査結果によると、沈下した橋脚のコンクリート部の下 に0.6mの層厚の礫混じり細砂が見られる.この層は、 「非常に不均質で乱れた細砂からなる.含水量が多く、 非常に緩い」と表現されている.「含水量が多く、非常 に緩い」ことから、基礎下の砂礫層の細粒分が吸い出さ れて、基礎が沈下したことが推察された.

4. 河道内の流れ解析

十文字橋周辺の酒匂川10.2km~11.4km区間における流 況の再現計算を行い,河道内の流れの特性を考察した.

(1) 解析方法

非定常 2 次元の浅水流方程式を有限体積法により数値 解析した.基礎式は一般曲線座標表示の連続式および鉛 直積分した運動方程式であり,水深平均流速(*u,v*)と流量 フラックス(*M,N*)を反変成分に変換して解析した.差分 化の際には,移流項は1次精度の風上差分,移流項以外 は2次精度の中心差分,時間積分は2次精度のAdams-Bashforth法を用いた.変数配置はスタガード格子系であ り,長田らのモデル²⁾を利用した.橋脚による水位のせ

図-2 被災した十文字橋P4, P5橋脚の被災状況側面図¹⁾ 図-

図-3 被災後に調査したP4橋脚の基礎の設置状況平面図¹⁾

きあげ効果を考慮するために、橋脚に作用する流体力 (f_xf_y) をMorison式で与え、流況解析を行った. 抗力係数 $C_{\rm D}$ は1.0とし、橋脚の(x,y)方向幅 (B_x,B_y) および橋脚周辺の 格子セル面積Aを与えて計算した.

(2) 河道状況と解析条件

解析区間は酒匂川10.2km~11.4km区間の約1.2kmとした. 同区間周辺の空中写真を写真-1 に示す. 河床は平均約1/200の急勾配で,河道には単列砂礫州が形成されている. 十文字橋付近において河幅B=270m,最大水位時の平均水深h=3.7m,河床材料の平均粒径5cmとして,河幅水深比(B/h=70)と水深粒径比(h/d=80)を求め,中規模河床形態の領域区分図³に入力すると,河床形態は単列の交互砂州と推定できる. これは写真-1 に見られる砂州の状況と整合する. 構造物は,上流から順に新十文字橋(10.9km),十文字橋(10.7km),小田急鉄道橋(10.5km)および床固工(10.35km)があり,松田水位観測所が床固工の直下流にある. 川音川合流点の上流にある松田水位観測所までを解析範囲とした.

解析格子は、縦断方向約100m間隔の河道の横断測量 図(平成17年度測量)と平面図を基に作成した. 各測量 断面の中間の断面を内挿して縦断方向の格子間隔を約 50mにした. 格子点数は縦断方向29点×横断方向100点 である. Manningの粗度係数は一様に0.03s/m^{1/3}を与えた.

境界条件として与えた上流境界の流量と下流境界の水 位を図-4 に示す.横軸の時間は2007年9月6日午後21:30 を基準時刻ゼロとした.水位は松田水位観測所の記録を 利用した.流量は等流を仮定して算定したものである. その際,水位観測所付近の横断面図および水位記録を用 い,河床の縦断勾配を1/200として計算した.最大流量 は2674m³/sとなり,松田地点の計画高水流量の2800m³/s に近い値を得た.十文字橋地点の計画高水位は51.123m,

出水時の最高水位は50.73mであったので、今回の出水時

(3) 解析結果および考察

の最大流量は2800m3/s近くと推定された.

図-5は水位および流速ベクトルの時間変化を示す.高 水敷の上まで水位が到達した状態の川幅一杯の大出水流 れが再現された.低水路は約3~6m/sの流速域が支配的

写真-1 酒匂川の十文字橋周辺の空中写真

であるが、十文字橋より上流の左岸側と十文字橋の下流 の右岸に広がる高水敷において流速は1~2m/s以下に抑 えられている.流速8m/sを超える範囲が所々にあるが、 これらの箇所では水深が1~2m以下で比較的浅いことが 分かっている.各橋梁断面における流速は6m/s以下であ る.十文字橋の右岸寄りにある短い径間で設置された橋 脚付近では流速が3m/s以下に低減しているのに対して、 径間の比較的長いP6橋脚付近で流速が5~6m/s程度と大 きく、被災橋脚は出水時も流心部付近にあったことが計 算結果からも推定される.P5周辺の流速は最大で4~ 5m/s程度で、P4周辺では3~4m/s程度である.

5. 橋脚周辺の流れ解析

4.で示した河道内の流れ解析結果を, Delft3Dに入力して橋脚周辺の流れの解析を行った. なお,本解析結果を用いて6.において橋脚底部周辺の流れ解析を実施する.

(1) 入力条件

a)地形形状

地形形状は、被災前後の十文字橋梁調査結果¹⁾ に示されている深浅測量結果と $\angle x = 1.0m$ 、 $\angle y = 0.5 \sim 1.0m$ の

図-4 解析区間の上流端の流量と下流端の水位ハイドログラフ

図-5 水位・流速ベクトルの時間変化

メッシュ幅を用いて作成した. 平面メッシュ図を図-6 に示す.

b) 上·下流側境界条件

4.河道内の流れ解析で求めた時系列流速を上流側境界 条件とし、時系列水位を下流側境界条件として入力した.

(2) 解析結果および考察

a)平面流速分布

図-7に,最高水位時である9月7日午前2時における平 面流速分布(左側が上流)を示す.

図-7において、上流側境界条件と同様に、図の下側 (河川中央)から上側(左岸)に向けて流速が弱まる状況が解析されている.また、最高流速は橋脚の上流側側 面で発生し、それに次ぐ流速が各橋脚間で発生している 状況が解析された.

b)橋脚周りの水位分布

図-8に、最高水位時である9月7日午前2時におけるP5 の橋脚周りの水位分布(左側が上流)を示す.赤いライ ン部分が橋脚周りの水位である.図-8に示すように、最 高水位は橋脚の上流側で発生し、最低水位は橋脚の下流 側で発生している状況が解析された.

6. 橋脚底部周辺の流れ

洪水時に沈下した橋脚P5の橋脚底部周辺の流れ場についてFLOW3Dを用いて再現計算を行った.乱流モデルとしてはLESモデルを用い,多孔質抵抗はダルシー則と非ダルシー則の両者の影響を考慮した式を用いた.

(1) 解析条件

P5周辺の現況の河床高,5.で得られたP5上流側のピー ク時付近の水位,流速を参照して計算条件を設定した.

- ・解析領域: 36m×14m×15m
- ・メッシュ数:222×100×121
- ・格子間隔: $\Delta x=0.1\sim0.4$ m, $\Delta y=0.1\sim0.3$ m= Δz ・地盤条件

粒径:0.05m, 間隙率:0.45, 水中安息角:40°

図-6 平面メッシュ図

なお、洗掘初期の状況から橋脚が沈下することは考え にくいので、ある程度橋脚前面が洗掘を受けた状況下で 橋脚が沈下したのではないかと考えて、図-9の点線で示 される橋脚の上流側があらかじめ洗掘されていると仮定 して解析を行った.

・初期水深: 地盤の上から4.70m

・境界条件: 上流端;一定流速3.1(m/s),下流端;自由流出

(2) 解析結果および考察

図-10は、橋脚中心の縦断流速分布を示している.図 より、橋脚前面でせき上げられている様子がわかる.また、橋脚前面で下降流が発生し、橋脚前面の洗掘孔内で 時計回りの渦を形成していることがわかる.一方、橋脚 下流側では渦による上昇流と逆流が発生している.

図-11は、橋脚下面直下5cmの位置における平面流速 分布を示している.図より、橋脚前面から橋脚下部へ浸 透した流れは、橋脚側面および橋脚下流側へと流出する 様子がわかる.このことより、礫床河川に設置される橋 脚の基礎が浅い場合には基礎下部にも浸透流が発生する ため、橋脚の安定性を検討する際には、浸透による橋脚 下部の土砂の抜け出しの影響も考慮する必要があること がわかる.図-12 は橋脚上流側、中央、側面、下流側に

図-8 最高水位時9/7の2:00におけるP5の橋脚周りの水位分布

おける橋脚下面直下の浸透流速の大きさ(見かけの流 速)を示したものである.図より,橋脚上流側の浸透流 速が13cm/s程度と最も大きく,側面付近で6cm/s程度と 橋脚上流側の半分程度となり,橋脚下流端付近では更に 浸透流速は小さくなり3cm/s程度となる.間隙率を考慮 して実流速に換算すると,それぞれ30cm/s,12cm/s,

6cm/s程度となる.また,図-12(b)は,洗掘が起きていない状況の浸透流速を示している.この図より,洗掘が起きていない場合よりも洗掘孔がある場合の方が浸透流速が大きくなることがわかる.このことから,洗掘の進行と同時に橋脚下部の土砂の抜け出しによる橋脚の沈下の危険性も増すことがわかる.なお,実際の洪水時には,橋脚前面において大きく水位が変動するため,上記で得られる浸透流速に変動成分を割り増しして橋脚の安定性を検討する必要がある.

7. 被災原因の推定

(1) 既往の洗掘に関する文献を用いた洗掘深の推定

ここでは、 A.J.Raudkivi⁴⁾ と現地諸元を用いた洗掘 深を計算して、被災状況との比較を行い、被災原因 を推定する.

ここで、5Pは2段橋脚で、上段の幅:*b*=2.0m、下段 の幅:*b*=4.0mである.これらの値を用いて、5Pの推定 洗掘深Yseを求めるとYse=2.05m~3.04mと計算された. 一方、5P実測洗掘・沈下深さは、Ysep=2.3~4.3 mであ る.したがって、5P付近で実測された河床高さから判定

図-11 z 断面流速分布図(z=1.95m,下の橋脚下面から鉛直下向きに5.0cmの平面)

図-12 橋脚底面流速

される洗掘深は推定洗掘深より大きい.大きな洗掘を受けても横方向に倒壊せず,鉛直方向に沈下したとするには、「基盤からの吸出し」など追加の考察が必要であると考えられる.次に、6Pは2段橋脚で、上段の幅:b=1.2m、下段の幅:b=4.9mである.これらの値を用いて、6Pの推定洗掘深Yseを求めると、Yse=1.04m~3.87mと計算された.一方、6P実測洗掘深は、Ysep=2.3~3.3mである.したがって、計算された洗掘深は、実測洗掘深さを包含し、洗掘の可能性が高い.

(2) 橋脚底部周辺の浸透流速と砂の移動限界流速の比較 による被災原因の推定

6.において,解析結果として示された橋脚底面流速は,
(a)洗掘ありにおいて,断面平均浸透流速2.25~
13.6cm/s,間隙内浸透流速5~30cm/s

(b)洗掘無しにおいて,断面平均浸透流速1.78~ 5.79cm/s,間隙内浸透流速4~13cm/sである.

また,被災を免れた右岸側橋脚側面に堆積した粗砂と, 右岸側橋脚後方に堆積した細砂の粒度試験結果として以 下の値が示された.

粗砂のD₁₀=0.9mm, D₅₀=2.5mm, D_{max}=19mm

細砂の D_{10} =0.089mm, D_{50} =0.21mm, D_{max} =9.5mm

一方,石野ら⁵⁾ は砂礫下での砂の移動限界流速の関係 を求めている.さらに,石野ら⁶⁾ は明石海峡橋脚周辺の 捨石内での現地浸透流速の時系列変動状況を計測し,現 地の浸透流速の変動幅は20%と求めている.したがって, (a)洗掘ありの場合において浸透流速が変動する効果を考 えると,間隙内浸透流速の最大値は,6~36cm/sとなる. 一方,十文字橋で採取した砂の最大粒径は,19mmであ る.これに対する移動限界流速は,石野ら⁵⁾ から, 30cm/sと読み取れる.この値と,上記の間隙内浸透流速 との比較から,十文字橋の橋脚下の礫間に存在した砂は, 浸透流により流出した可能性が示された.

8. 礫床河川の橋脚倒壊に対する対策工

古い時代に礫床河川に建設された橋脚は,根入れが不 足しているとともに,橋脚下の砂礫内の砂が浸透流速に

図-13 矢板等による根入れ深さの増強と洗掘防止工の施工状況

より吸い出される可能性が高い特徴を持つ.このような 状況に対応するための対策工を図-13 に示す.

この対策工は以下の内容で構成される.

1)不足している根入れを補填するための鋼矢板,2)鋼矢板内に囲まれた砂礫内の砂の吸出しを防止する充填工,
 3)鋼矢板と橋脚の隙間を充填する防護コンクリート
 4)鋼矢板周辺に発生する洗掘から鋼矢板を防護する護床ブロック

9. 結論

礫床河川においては洪水中に橋脚が沈下し、災害を受ける事例に対して、現象に即した条件設定を行い、橋脚 付近の巨視的・微視的流れの解析と底部の浸透流解析を 組み合わせて災害の原因究明を行い対策工の研究を行な い、合理的な結果を得た.本研究が、関連する橋梁の被 害軽減に役立つことを期待する.

謝辞:十文字橋・酒匂川に関する資料は、神奈川県、 松田町から提供していただいた.なお、本研究は、河川 整備基金の補助をいただいた.ここに、関係者各位に厚 く御礼申し上げます.

参考文献

- 1) 神奈川県,松田町,開成町:十文字橋災害復旧の概要,2007.
- 2)長田信寿他:移動一般座標系による開水路非定常流の数値解 析,土木学会論文集,No.533/II-34, pp.267-272, 1996.
- 3) 土木学会編, 水理公式集, p.255, 1985.
- 4) A.J.Raudkivi : Scour at bridge piers, Balkema, Rotterdam, 1991.
- 5) 石野和男他:急潮流下における橋脚周辺の捨石洗掘防止工の 設計法,土木学会論文集,No521/2-32, pp123-133, 1995.
- 6) 石野和男他:急潮流下における海洋構造物周辺の捨石洗掘防止工,土木学会論文集,No462/5-18, pp33-42, 1993.

(2009.9.30受付)