ジオシンセティックスを用いたL型排水盛土防水工の 水位上昇抑制効果に関する研究 EFFECTS OF WATER LEVEL REPRESSION IN ENBANKMENT WITH L-SHAPED GEOSYNTHETIC DRAIN

齋藤 雅彦¹・原 健二²・澁谷 啓³ Masahiko SAITO, Kenji HARA and Satoru SHIBUYA

¹正会員 博士(工) 神戸大学助教 都市安全研究センター(〒657-8501 神戸市灘区六甲台町1-1)
²正会員 修士(工) 太陽工業株式会社 技術研究所 (〒573-1132 枚方市招提田近3-20)
³正会員 Ph.D.,博士(工) 神戸大学教授 工学研究科市民工学専攻(〒657-8501 神戸市灘区六甲台町1-1)

Geotechnical engineers are increasingly concerned with embankment failures induced by heavy rainfalls or earthquakes. In recent earthquakes occurred in Japan, embankments involved with high water level were severely damaged, whereas those without seepage water were undamaged. In an attempt to reduce the risk for such embankment failures, we have recently proposed an L-shaped geodrain system with which seepage water flow into the embankment may be prevented even in the event of heavy rainfalls. In this paper, the results of seepage flow test in full-scale (and fully-instrumented) embankments protected and unprotected by the L-shaped geosynthetic drain are discussed by showing the results of numerical simulation of seepage flow, and also design for an L-shaped geodrain in the embankment is proposed.

Key Words : geosynthetic, embankment, drainage, full-scale test, numerical simulation

1. 序論

近年,豪雨や地震による盛土構造物の大変形や崩壊に よる災害が多発している.これらの発生原因の一つとし て,盛土の側面(背部の斜面や地山)からの雨水浸透に よる盛土内水位の上昇と,それに伴う盛土材料の強度低 下が考えられるが,従来の設計法ではこのような盛土内 への浸水に対する配慮が十分ではなかった可能性が指摘 されている¹⁾.

従来の浸水対策工法は、主に水平方向に高透水性の排水層を設置する工法が多い^{2),3),4)}.一方、著者ら⁵⁾は、盛 土内に高透水性のジオシンセティック(土木用途で用いられる高分子材料)排水材をL字型に配置し、盛土側面からの浸透による盛土内の水位上昇を抑制する工法(以下「L型排水盛土防水工」と記す)を提案している.

本研究では、L型排水盛土防水工の水位上昇抑制効果 を確認するために実物大実験を行うとともに、数値シ ミュレーションによる実験結果の再現を通じて、地盤内 の飽和度および圧力分布等を詳細に把握する.これに加 えて、水位上昇の抑制効果を簡易に評価する方法を提案

し、その有効性について検討する.

2. 実験方法

(1) 実験装置

実験装置の概要を図-1に示す.盛土は高さ2.5m,幅 3.9m,奥行き2.0mであり,地盤材料としてまさ土を用いた.図-2は実験に用いたまさ土の粒径加積曲線である. 下流端の壁面は垂直壁とし,壁面工には低強度のジオグ リッド(格子状高分子材料)を巻込んだ自重の小さい EPS(発泡スチロール)ブロックを用いた.

実験ケースは,無対策(排水材なし; Case-1)および L型配置(Case-2)の2ケースとし,L型配置のケースで は、厚さ11mmの片面のみ通水可能なジオシンセティッ クス排水材を用いた.すなわち,鉛直排水材は上流側の 面、水平排水材は上面のみ通水可能となっており,鉛直 排水材を通過して下流側には流れない構造となっている.

上流側の給水装置としては、多数の通水孔を設けた直径0.1mの塩化ビニール製パイプを連結して並べ、水位は最大2.4mまで上昇させた.

図-2 使用したまさ土の粒径加積曲線

また,地盤状況の計測には,盛土内に水圧計と土壌水 分計をそれぞれ16個埋設し,それぞれの位置はA1~D4 で表す.またCase-1では鉛直パイプを4本設置して水位 の計測も行った.

(2) 実験手順

Case-2の実験手順は、以下の通りである.

- 1) 給水パイプに注水
- 2) 給水面の水位を2.4mに固定(約28時間放置)
- 3) 給水バルブ閉鎖(自然排水;約40時間放置)
- 4) 再給水
- 5) 給水面の水位を2.4mに固定(約75時間放置)
- 6) 給水バルブ閉鎖(自然排水)

また、Case-1では上記のうち3)以降は実施せず、給水は1回のみとした.これは、Case-1では1回目の給水開始から約2時間後に地盤の崩壊が発生したためである.

3. 数値シミュレーション

(1) 基礎方程式

リチャーズの式⁶⁾ に基づく飽和・不飽和浸透流の基礎 方程式は以下のように表される^{7),8),9)}.

$$\left(C + \beta S_s\right) \frac{\partial \psi}{\partial t} = \nabla \cdot \left[\mathbf{K} \cdot \left(\nabla \psi + \nabla Z\right)\right]$$
(1)

ここに、C:比水分容量(= $\phi dS_w/d\psi$)、 ϕ :土の間隙率、 S_w :飽和度($0 \le S_w \le 1$)、 S_s :比貯留係数、K:透水係数 テンソル、 ψ : 圧力水頭、Z:位置水頭である.また、 完全飽和状態($S_w = 1$)および不飽和状態($S_w \ne 1$)におい て、それぞれ $\beta = 1$ および $\beta = 0$ となる.

透水係数テンソルKは、比透水係数kおよび飽和透水 係数テンソルKsを用いると下式となる.

$$\mathbf{K} = k_r \cdot \mathbf{Ks} \tag{2}$$

境界条件は, 圧力規定の境界 Г1 上で,

$$\psi = \psi_1 \quad on \quad \Gamma_1 \tag{3}$$

流束qが規定される境界Г2上で,

$$q = q_2 = -\mathbf{n} \cdot \mathbf{K} \cdot (\nabla \psi + \nabla Z) \quad on \quad \Gamma_2 \tag{4}$$

ここに、nは外向きの単位法線ベクトルである.

(2) 解析モデル

まず図-3のように直交座標 (x, z) を定義し、鉛直2次 元問題として取り扱う. 圧力水頭を ψ 、境界流束をqと すると、底面 (z=0m) および上面 (z=2.5m) において q=0, x=3.6m (下流端) は浸出面境界とする. また、給 水面 (x=0m) は圧力水頭既知境界とするが、タンクの 水位は時間的に変化する. ここで、給水時は給水開始か ら最高水位 (H=2.4m)に達するまで (Case-1は約10分, Case-2は約30分), Hは時間に対して線形的に増加する と仮定し、排水時のタンクの水位は以下の常微分方程式 に従うものとした.

$$\frac{dH}{dt} = -\frac{Q_i(t,H)}{A} \tag{5}$$

ここに, H は給水タンク内の水位, A はタンクの断面 積, Q_i はタンクから地盤内に流入する流量である.た だし, Q_i は陽的に与えられないので,繰り返し計算に よりH の時間変化を求めた.

初期条件は、実験結果に基づいて全領域について圧力 水頭一定とし、それぞれCase-1では ψ =-0.75m、Case-2で は ψ =-2.5mとした. このように初期の圧力水頭の値は大 きく異なっているが、飽和度の差は数%であり、初期水 分量が大きく異なっていたものではない.

(3) 地盤物性値

不飽和浸透解析における水分特性曲線は,実験時の水 分計とサクション計による測定結果から式(6)のvan Genuchten の式¹⁰⁾でフィッティングを行った.

$$S_{e} = \frac{S_{w} - S_{r}}{1 - S_{r}} = \left\{ 1 + \left(\omega \psi_{c} \right)^{n} \right\}^{-m}, \quad m = 1 - 1/n \quad (6)$$

ここに、 S_e および S_r は、それぞれ有効飽和度および残留 飽和度、 ψ_c は毛管圧、 ω 、n、mはパラメータである.

Case-1では吸水と脱水の繰り返しは行わなかったので, 吸水曲線のみを求め, Case-2では吸水曲線と脱水曲線の 両者を同定した. すなわち, Case-2の数値シミュレー ションではヒステリシスを考慮している¹¹⁾. 表-1はパラ メータの同定結果, 図-4はフィッティングの結果である.

地盤と排水材の飽和透水係数は、数値解析により求め た各測定点における飽和度の時間変化、および下流側か らの流出量の時間変化と、実験結果が概ね一致するよう 試行錯誤により同定し、Case-1の地盤は 8.5×10^5 m/s と した. Case-2については、鉛直排水材よりも上流側の地 盤は締固めが十分にできなかったため、上流側と下流側 は異なるものとし、上流側は 2.3×10^5 m/s、下流側は6.0 $\times 10^6$ m/s とした. また排水材の飽和透水係数は、 $8.5 \times$ 10^2 m/s とした. これは、事前に行われた要素試験から 得られた値($1.0 \times 10^2 \sim 3.0 \times 10^2$ m/s;上載荷重20kPa) と比較すると若干大きいが、概ね妥当な値と考える.

比透水係数k_rは、有効飽和度S_eの関数として次式で 求めた¹²⁾.

$$k_{r} = S_{e}^{\varepsilon} \left\{ 1 - \left(1 - S_{e}^{1/m} \right)^{n} \right\}^{2}$$
(7)

ここに、 ε は空隙の連続性に関わるパラメータであり、 $\varepsilon=1/2$ とする.また、比水分容量Cについては、式(6)を ψ_c で微分することによって得られる次式より求めた.

$$C = -\phi \frac{dS_w}{d\psi_c}$$

= $\phi \omega mn (1 - S_r) (\omega \psi_c)^{n-1} \left\{ 1 + (\omega \psi_c)^n \right\}^{-m-1}$ (8)

4. 実験結果および数値シミュレーションの結果 と考察

図-5および図-6は、それぞれCase-1とCase-2における 測点A1, B4, C4の飽和度の時間変化であり、実験結果 と数値シミュレーションによる再現結果を比較したもの である.また、図-7はCase-1における水位測定結果と数 値シミュレーションによる圧力水頭分布の比較、図-8は Case-2の排水量の時間変化について実験結果と再現結果 を比較したものである.

図-5(c)と図-6(b),(c)では初期の値が異なっている が、これは数値シミュレーションの際に初期条件を全領 域について一定の圧力水頭値とし、初期飽和度の空間的 なばらつきを考慮していないためである.この点を除け ば、実験結果は数値シミュレーションによって非常に良 好に再現されているものと考える.

次に、Case-1とCase-2の結果を比較すると、Case-1で はここに示した3点すべてにおいて飽和度は100%に達し ているのに対し、Case-2では排水材よりも下流側の飽和 度の上昇が抑制されていることが確認できる.

図-9および図-10は、数値シミュレーションによる Case-2の140時間後の飽和度分布と圧力水頭分布である が、鉛直排水材より下流の部分では水位の上昇が0.5m以 下に抑制されていること、および鉛直排水材の前面で水 圧が急激に低下しており、止水壁のように過大な水圧も 作用しないことがわかる.

図-11 盛土内の流れの模式図

また, Case-1の無対策の盛土は, 給水開始から約2時 間後に排水下流端からの排水生じ, その直後に崩壊に 到った. 一方, Case-2のL型排水盛土防水工では, 給水 開始から約10時間で概ね定常状態に達し, 崩壊はもとよ り盛土自体も全く変形しなかった. この点はシート埋設 による補強効果の可能性も完全には否定できないが, 防 水効果に関しては, 本実験によりその有効性が確認され たと言えよう.

5. 水位上昇抑制効果の簡易評価法

図-11の模式図において,鉛直排水材に流れ込む流量 Q₁および下流側からの排水量Q₂は、1次元不圧地下水流 の流量公式を適用すると以下のように表される.

$$Q_1 = \frac{k_1}{2L_1} \left(H^2 - h^2 \right)$$
(9)

$$Q_2 = \frac{k_2}{2L_2}h^2 + \frac{k_d d}{L_2}h$$
(10)

ここに、 L_1 は給水面から鉛直排水材までの距離、 L_2 は鉛 直排水材から浸出面までの距離、 $L(=L_1+L_2)$ は給水面から 浸出面までの距離、Hは給水面における水位、dは排水 材の厚さ、 k_1 および k_2 はそれぞれ上流側と下流側の地盤 の透水係数、 k_d は排水材の透水係数、hは鉛直排水材の 設置位置における水位である.

図-12 簡易評価式による実験時の水面形の計算結果

また,定常状態においては連続の式より $Q_1=Q_2$ なので,式(9)および式(10)からhは以下の2次方程式の解として求められる.

$$\frac{1}{2} \left(\frac{k_1}{L_1} + \frac{k_2}{L_2} \right) h^2 + \frac{k_d d}{L_2} h - \frac{k_1}{2L_1} H^2 = 0$$
(11)

このときの水面形 h' は鉛直排水材の上流側と下流側で それぞれ以下のように求められる.

上流側:
$$h'(\xi_1) = \sqrt{H^2 - \xi_1(H^2 - h^2)}$$
 (12)

下流側:
$$h'(\xi_2) = \sqrt{h^2(1-\xi_2)}$$
 (13)

ここに、 ξ_1 、 ξ_2 は局所座標であり、xを上流端が0の 流れ方向を正とする水平方向の座標とすると、それぞれ $\xi_1=x/L_1$ および $\xi_2=(x-L_1)/L_2$ である(ただし、 $0 \leq \xi_1 \leq 1$ 、0 $\leq \xi_2 \leq 1$).

図-12は、このような手順で実験時(Case-2)の水面 形を推定したものである.図-10と比較すると、鉛直排 水材より上流側の水面形の再現性は良くない.これはH に対してL₁が小さい場合は自由水面の勾配が大きく、準 一様流の仮定が成り立たないためと考えられる.一方、 鉛直排水材設置位置における水位hや、下流側の水面形 については数値シミュレーション結果とほぼ同様の結果 が得られている.

さらに、上流側と下流側の透水係数が等しいと見なせる場合は $(k_1=k_2=k)$, 無次元量として α , β , γ を式(14)ように定義し、式(11)に代入して整理すると、 α , β , γ の関係は式(15)で表すことができる.

$$\alpha = \frac{k_d d}{kH}, \quad \beta = \frac{h}{H}, \quad \gamma = \frac{L_1}{L}$$
(14)

$$\beta = \sqrt{\alpha^2 \gamma^2 + 1 - \gamma} - \alpha \gamma \tag{15}$$

図-13は、3種類のγに対して式(15)から求めたα~β 関係と、それぞれのγに対して5種類のαを用いて実施した数値解析の結果を比較したものである.ここで、数値解析では、鉛直排水材の下端(図-11の点P)における圧力水頭をhと見なしている.γが0.1の場合にβがやや大きめに評価されているが、これは先に述べたようにγ(=L₁)が小さい場合は、準一様流の仮定に無理が生じるためと考えられる.それ以外については式(14)と数値解析の結果は概ね一致している.

これより、L型排水盛土防水工の設計においては、式 (15)を用いると、図-13のように計算図表化が可能となり、 設計諸元の概略検討が極めて容易に行えるであろう.

6. 結論

本研究では、実物大実験と数値シミュレーションに よって、盛土側面からの浸透による盛土内の水位上昇を 抑制するL型排水盛土防水工の効果を確認した.これに 加えて、水位上昇の抑制効果を簡易に評価する方法を提 案し、その有効性について検討した.これらによって得 られた結論を以下にまとめる.

- 1) L型排水盛土防水工により、側面からの浸透に対して 顕著な水位上昇抑制効果が確認された.
- 2) 水位低下効果の簡易評価法を提案し、鉛直排水材より も下流側の水面形については数値解析と同等の推定結 果が得られることを確認した。

3) 簡易評価式の無次元化を試み,数値解析結果と比較す ることによって有効性を確認した.これにより水位低 下効果の概算値を容易に算定し得ることを示した.

謝辞:本研究は,文部科学省科学研究費補助金基盤研究B(課題番号:19360214,研究代表者:澁谷啓)の支援を受けた.また実物大実験と数値シミュレーションの実施において,神戸大学大学院工学研究科の三井仁哉君と神戸大学工学部の東修平君にご協力頂いた.ここに記して謝意を表す.

参考文献

- Shibuya, S., Li, D.J., Noda, T. and Nakano, H.: Mechanical behaviour of structured clay and its simulation, Geomechanics -Testing, modelling and simulation, *ASCE Special Technical Publication*, No.143, pp.286-306, 2005.
- 2) 嘉門雅史,和田秀敏,赤井智幸,楠部義夫,福田光治,岩 田潔:ジオシンセティック水平排水材(GHD)の高含水比粘 性土盛土試験施工への適用,第30回土質工学研究発表会, pp.2477-2480, 1995.
- 宮田義壽,小暮敬二:粘性土盛土内の水平排水層に必要となる排水機能の評価法,第32回地盤工学研究発表会, pp.2025-2026,1997.
- 谷永強,井谷雅司,宮武裕昭,大下武志:盛土内水平排水 工の排水効果に関する実験的評価:土木学会第63回年次学 術講演会,pp.703-704,2008.
- 5) 原健二, 澁谷啓, 齋藤雅彦:ジオシンセティックスを用いた「L型排水盛土防水工」の研究開発, ジオシンセティック ス技術情報 Vol.24, No.1, pp.9-20, 2008.
- Richards, L. A. : Capillary Conduction of Liquids through Porous Mediums, *Physics*, 1, pp.318-333, 1931.
- Neuman, S. P. : Saturated unsaturated seepage by finite elements, *Proc., ASCE HY*, Vol.99, No.12, pp.2233-2250, 1973.
- Neuman, S.P. : Galerkin method of analyzing non-steady flow in saturated-unsaturated porous media, *Finite Element Method in Flow Problem*, edited by C. Taylor, O.C. Zienkiewicz, R.H. Gallagher, John Wiley & Sons, Chap.19,1974.
- 9) 赤井浩一,大西有三,西垣誠:有限要素法による飽和-不飽 和浸透流の解析,土木学会論文集,第264号,pp.87-96,1977.
- van Genuchten, M. T. : A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, *Soil Science Society American Journal*, Vol.44, pp.892-898, 1980.
- Scott, P. S., Farquhar, G. J. and Kouwen, N. : Hysteretic Effects on Net Infiltration, *In Advances in Infiltration, Am. Soc. Agric. Eng.*, St. Joseph, MI, pp.163-170, 1983.
- Maulem, Y. : A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, Vol.12, pp.513-522, 1976.