雨量計の観測値を用いた降水量の空間代表性の解析

SPATIAL REPRESENTATIVENESS OF PRECIPITATION BASED ON DATA OBSERVED BY RAIN GAUGES

鈴木博人¹・中北英一²・高橋日出男³ Hiroto SUZUKI, Eiichi NAKAKITA, Hideo TAKAHASHI

¹正会員 理修 東日本旅客鉄道株式会社千葉支社設備部(〒260-0031 千葉県千葉市中央区新千葉1-3-24) ²正会員 工博 京都大学防災研究所教授(〒606-0011 京都府宇治市五ヶ庄) ³非会員 理博 首都大学東京大学院都市環境科学研究科教授(〒192-0397 東京都八王子市南大沢1-1)

Key Words : spatial representativeness, meso--scale, 1-hour precipitation, rainfall intensity, disturbance, geographical conditions

1 はじめに

鉄道や道路では,降雨災害に伴う事故を防止するため に,地上雨量計の観測値に基づいて列車運転規制や通行 規制を行っている¹⁾.鉄道や道路における降雨災害は主 に沿線や沿道で発生する土砂災害で,土砂災害の発生に は降雨強度と累積雨量の両者が関係している¹⁾.大雨は 台風や雷雨などのさまざまな時間的・空間的スケールの 気象擾乱によって発生するが,1時間降水量を代表とす る降雨強度は個々の積乱雲の影響を大きく受けている. そのため,雨量計の観測値に基づいて土砂災害の発生を より正確に予測するには,個々の積乱雲の空間スケール に相当する数kmから10数km(メソスケール)の範 囲において,実際の降水量が雨量計の観測値によって代 表可能である空間範囲を把握することが重要である.そ して,それに基づいて雨量計の配置間隔(密度)を決め ることが望ましい.

このような降水量の空間代表性を論じるにあたり,例 えば,井良沢・田口²⁾や佐溝ら³⁾などは2地点の相関係 数 仙台管区気象台調査課⁴⁾や著者ら⁵⁾などは2地点の降 水量比を用いて解析している.本研究では,2地点の降 水量の相関が高くても降水量に差異がある場合があり得 ると考えて,著者ら⁵⁾と同様に2地点の降水量比を用い て降水量の空間代表性を評価することにし,降水量比が 1に近い場合を降水量の空間代表性が高いと考えた.

メソ スケールにおける降水量の空間代表性を調べた 事例として,例えば仙台管区気象台調査課⁴⁾は,ほぼ同 一地点とみなされる一辺15mの正三角形内でも,ひと雨 の降水量は±6%のばらつきがあり,3km四方の広さでは ±14%のばらつきがあるとしている.佐溝ら³⁾は,4箇所 における降水量の観測から,1時間降水量の相関は2地 点の距離が5km以内では高いが,5km以上では著しく低 下するとしている.以上は事例解析であるが,著者ら⁵⁾ による東日本旅客鉄道株式会社(以下,JR東日本とする) 及び気象庁の雨量計で観測された降水量データを用いた 2 地点の降水量比の統計解析によると,関東平野では一 般的な降雨における1時間降水量の空間代表性が高い範 囲は5km程度,局地性の高い降雨は2.5km程度である.

降水量の空間代表性に基づいて雨量計を配置するため には,降水量の空間代表性に関するモデル化が必要であ る.そこで,本研究では著者ら⁵⁾が用いたJR東日本及び 気象庁の降水量データに,国土交通省(以下,国交省とす る)及び東京都の降水量データを加えることで,より密な 配置の雨量計で観測された降水量データを用いて,メソ

図-1 解析に用いた雨量計の位置 . 点線は東西及び南北地域 の境界 .

スケールにおける2地点の1時間降水量の降水量比に ついて解析を行うとともに,2地点の降水量比と距離と の関係式を求めた.また,降雨強度,降雨を発生させた 気象擾乱,及び地理的条件が2地点の1時間降水量の降 水量比と距離との関係に与える影響を調べた.

2 解析方法

(1) 対象地域

対象とする地域は,日本最大の平野である関東平野の 標高150m以下の地域とした.関東平野における各観測 地点は,基本的に起伏が小さい平坦面が連続する平野上 に位置している.そのため,降水量に与える地形の影響 が小さい地域と考えられることから,本研究の目的とす る降水量の空間代表性の解析に適した地域と考えた.

(2) 降水量データ

本研究では,降水量データにJR 東日本,気象庁,国交 省,及び東京都の雨量計で観測された正時における1時 間降水量を用いた .JR 東日本の降水量データは,鉄道沿 線に約 10km 間隔で設置された雨量計による観測データ である⁶⁰.気象庁は地域気象観測システム(アメダス), 国交省は水文水質データベース (http://www1.river.go.jp/ contents.html),東京都は東京都水防災総合情報システム (http://www.kensetsu.metro.tokyo.jp/suibo/display/toppage. html)の降水量データを用いた.解析に用いた地点は, 図-1 に示す 347 地点で、データソース別の地点数は表-1 のとおりである. 解析の対象期間は, これらの降水量デ ータがそろう 1991 年から 2007 年の 17 年間の暖候期(5 月~10月)とし、この期間で延べ10年以上の降水量デー タのある地点を対象にした.なお,JR 東日本,国交省, 及び東京都の降水量データについては,近隣3地点の気 象庁の雨量計で観測された降水量データと比較すること で異常値や欠測に関する品質チェックを行った.

表-1 解析に用いた雨量計の地点数及び観測年数.観測年数 は,1991年から2007年の暖候期における欠測や観測の 未実施期間を除いた1時間降水量が存在する延べ年数.

	雨量計の	観測年数(年)					
	地点数	最大	最小	平均			
JR 東日本	110	16.3	12.3	14.9			
気象庁	60	17.0	15.8	16.9			
国交省	87	17.0	11.3	16.1			
東京都	90	16.0	10.6	15.1			
合計	347	17.0	10.6	15.6			

図-2 1km ごとの雨量計の組合せ数.

(3) 雨量計の位置と2地点の距離

雨量計の設置地点の緯度・経度は,JR 東日本の雨量計 については地理情報システムを用いて秒単位で読み取っ た.気象庁の雨量計の緯度・経度は地域気象観測所一覧 表(地域気象観測所一覧表 FD),国交省の雨量計は水文 水質データベースで公開されている位置情報,東京都の 雨量計は東京都から入手した位置情報を用いた.なお, 国交省及び東京都の雨量計の緯度・経度については地理 情報システムで位置の確認を行うことで品質チェックを 行った.

2 地点の距離は、平面直角座標系(19 座標系)⁷⁰を用いて, 雨量計の設置地点の緯度・経度を平面直角座標に変換し た上で求めた.本研究の目的は、メソ スケールにおけ る雨量計で観測される降水量の空間代表性を明らかにす ることであることから、2 地点の距離が 10km までの場 合を対象にした.図-2 は関東平野における雨量計の1km ごとの組合せ数で 2 地点の距離が 2,5,10km 以下の雨量 計の組合せはそれぞれ 105,582,2175 組である.

(4) 解析方法

雨量計で観測される1時間降水量の空間代表性の解 析は,著者ら⁵⁾による2地点の降水量比に関するパーセ ンタイル値を用いる方法で行った.本研究では,2地点 の正時の1時間降水量を*Ri*及び*Rj*,降水量のしきい値 を10mmから30mmまでの5mm刻みとしたときに,2 地点の降水量比*Ri/Rj*は2地点のうちの1地点以上で1 時間降水量がしきい値以上の場合のデータを用いて計算 し,75及び95パーセンタイル値に着目する.図-3は,2 地点の距離が0,2,5,10kmに近い組合せについて,2地点 の正時における1時間降水量の関係を散布図で示したも のである.図中には,1時間降水量が10mm以上のデー タを用いて,横軸の地点に対する縦軸の地点の降水量比

図-3 2 地点の正時における1時間降水量の関係.図中のLは2 地点の距離,点線は横軸の地点に対する縦軸の地点の降水量比の5, 25,75,95 パーセンタイル値に対応し,数値はそれぞれのパーセンタイル値.

(a) 75 パーセンタイル値

(b) 95 パーセンタイル値

図-4 2地点のうちの1地点以上で1時間降水量が10mm以上のデータを用いた場合の2地点の1時間降水量の偏角に関する75及び 95パーセンタイル値と距離との関係.図中の はある距離±0.5kmの1kmの範囲に含まれる組合せの1時間降水量の偏角に関 するパーセンタイル値の平均値,実線は式(1)から算出される2地点の1時間降水量の偏角に関するパーセンタイル値.

の5,25,75,95 パーセンタイル値に対応する直線の傾き を示してある.なお,この5及び25 パーセンタイル値は 縦軸の地点に対する横軸の地点の降水量比の95及び75 パーセンタイル値に相当する.このように,2 地点の降 水量比に関する75及び95 パーセンタイル値は,1 つの 雨量計の組合せから2 つの値が求まる.したがって,解 析に用いる延べ地点数は表-2 に示した雨量計の組合せ 数の2倍である.

ここで,2地点の降水量比に関する95パーセンタイル 値には全体の95%の降雨事例が含まれる.したがって, 95パーセンタイル値以上には降水量比が大きい上位5% の降雨事例のみが含まれることから,95パーセンタイル 値を局地性の高い降雨の代表とみなすことにするまた, 75パーセンタイル値には全体の75%の降雨事例が含ま れることから,75パーセンタイル値を一般的な降雨と考 えることにする.

雨量計の各組合せのパーセンタイル値の計算にあたっては、1時間降水量のしきい値が低いほど、その値以上のデータ数が多くなり、統計解析を行う上で有利である.一方、降水量のしきい値が高いほど、その値以上のデータ数が少なくなるが、防災の観点から重要である. そこで本研究では95パーセンタイル値を算出することから、1時間降水量がしきい値を超過した回数(データ数)が20回以上の雨量計の組合せを計算対象にした.

2 地点の降水量比は,ある地点でしきい値以上の降雨 があり,もう一方の地点で降雨がない場合があるため,0 から無限大の値をとる.そのため,降水量比に関する75 及び95 パーセンタイル値が無限大になる場合があり,こ のような場合が含まれると降水量比に関するパーセンタ イル値と距離との関係を求めることが困難である.そこ で,著者ら⁵は以下の方法を提案した.初めに,2地点の 降水量 *Ri* 及び *Rj* の関係を直交座標(*Ri*,*Rj*)から極座標 (r,)に変換すると,偏角(=arctan(*Ra*/*Rb*))は0から

2の有限の値をとる.そして,ある距離の範囲に含ま れる組合せについて偏角の平均値を求めて,最後に直交 座標に再変換することで降水量比の平均値を求めた.本 研究では,この方法を応用して,2地点の降水量の偏角 に関するパーセンタイル値と距離との関係式を求めて, 最後に直交座標に再変換することで,2地点の降水量比 に関するパーセンタイル値と距離との関係式を求めた.

(5) 気象擾乱の分類

2 地点の降水量比と距離との関係について,降雨をも たらす気象擾乱による影響を把握するために,対象とし た全地点のうち1地点以上で正時において1時間降水量 が30mm以上の大雨が観測された日の降水量データを用 いた解析を行った.

大雨事例については,天気図と衛星写真から,大雨を もたらした気象擾乱を台風(熱帯低気圧を含む),停滞 前線,低気圧,雷雨の4つに区分した.ただし,台風と 停滞前線が共存する場合には,衛星画像によって台風本 体のスパイラル状の雲群を判別し,それによる降雨を台 風に,そうでない場合を停滞前線に区分した.また,梅 雨季や秋雨季などみられる活発な停滞前線は低気圧の連 なりとして認識できる⁸ことから,停滞前線上に解析さ れたメソ低気圧に伴う降雨は停滞前線に区分した.

図-5 2 地点のうちの1 地点以上で1 時間降水量が10,20,30mm 以上のデータを用いた場合の2 地点の降水量比に関する75 パーセンタイル値(上段)及び95 パーセンタイル値(下段)と距離との関係.図中の はある距離±0.5kmの1kmの範囲に含まれる組合せの降水量比に関するパーセンタイル値の平均値,実線は式(2)から算出される降水量比に関するパーセンタイル値.

(6) 地理的条件の分類

2 地点の降水量比と距離との関係について,雨量計の 位置する地点の地理的条件の影響を把握するために,2 地点の方位別と雨量計の位置する地域別の解析を行った.

2 地点の方位別の解析では,一方の地点から他方の地 点をみた場合の方位によって,2地点の組合せを南-北, 南東-北西,東-西,北東-南西の4方位に区分した. また,雨量計の位置する地域別の解析では,それぞれの 地域に位置する雨量計の地点数がなるべく均等になるよ うに関東平野を図-1に示す4つの地域に区分した.

3 降雨の空間代表性の分析

2 地点の1 時間降水量の降水量比と距離との関係について 降水量のしきい値を10mmから30mmまでの5mm 刻みとして解析を行うとともに関係式を求めた.

(1) 2 地点の降水量比と距離との関係

2 地点の1時間降水量の差異は,図-3 に示すように2 地点の距離が離れるほど大きくなり,2 地点の降水量比 に関する75 及び95 パーセンタイル値が大きくなる傾向 にある.図-4は,2 地点のうちの1 地点以上で1時間降 水量が10mm以上の場合のデータを用いて,極座標にお ける2 地点の1時間降水量の偏角に関する75 及び95 パ ーセンタイル値と距離との関係を示したものである.ま た,図-5 は同様に10,20,30mm以上の場合のデータを用 いて,2 地点の1時間降水量の降水量比に関するパーセ ンタイル値と距離との関係を示したものである.なお, 図-4 及び図-5 中の は,ある距離±0.5kmの1kmの範 囲に含まれる組合せについて,2 地点の1時間降水量の 偏角及び降水量比に関する75 及び95 パーセンタイル値 の平均値を0.5km ごとに示したものである.

図-5 によると,2 地点の1 時間降水量の降水量比に関する 75 パーセンタイル値は距離の増加に伴って緩やか

表-2 降水量のしきい値,気象擾乱,2地点の方位,及び地域 別の定数a.

擾乱	地域	方位	降水量の しきい値 (mm)	延べ 地点数	定数a	
					パーセンタイル値	
					75	95
全擾乱	全域	全方位	10	4,350	3.92E-02	2.83E-01
			15	4,350	4.52E-02	2.92E-01
			20	4,350	5.16E-02	2.93E-01
			25	4,332	5.83E-02	2.73E-01
			30	3,884	6.21E-02	2.57E-01
台風	全域	全方位	10	4,350	2.44E-02	1.08E-01
低気圧				4,186	2.27E-02	1.28E-01
停滞前線				4,350	5.76E-02	3.07E-01
雷雨				4,322	1.14E-01	5.25E-01
全擾乱	全域	東 - 西	10	1,076	4.14E-02	2.92E-01
		南東 - 北西		1,052	4.49E-02	3.16E-01
		南 - 北		1,098	3.65E-02	2.72E-01
		北東 - 南西		1,124	3.47E-02	2.56E-01
全擾乱	南西	今亡位	10	1,221	3.73E-02	2.73E-01
	南東			965	3.76E-02	2.71E-01
	北西	土方位		956	4.38E-02	3.19E-01
	北東	1		1,208	3.88E-02	2.78E-01

に増加するが,95パーセンタイル値は急激に増加する.2地点の降水量比のとり得る範囲は,距離が同じときに,降水量のしきい値が高い場合ほど大きく,95パーセンタイル値に比べて大きい.

(2) 2 地点の降水量比と距離との関係式

2 地点の1時間降水量の偏角は,2 地点の距離が0km (同地点)のとき /4(降水量比は1)である.図-4 に よると,2 地点の降水量の偏角に関する75 及び95 パー センタイル値は距離に対して上に凸の分布をし,距離が 無限大のとき /2(降水量比は無限大)に漸近する.そ こで,2 地点の1時間降水量の偏角に関するパーセンタ イル値 r(X)と距離 X との関係は,a を定数として次式で 近似することにした.

$$r(X) = \frac{1}{2} - \frac{1}{4} exp(-a*X)$$
 (1)

図-4 には,2 地点のうちの1 地点以上で1 時間降水量が 10mm 以上のデータを用いた場合に,最小二乗法により

(a) 75 パーセンタイル値

(b) 95 パーセンタイル値

図-6 2 地点における 1 時間降水量の降水量比に関する気象擾乱別の 75 及び 95 パーセンタイル値と距離との関係 .2 地点のうちの 1 地点以上で1 時間降水量が 10mm 以上のデータを用いて求めた定数 a により式(2) から算出 .

推定される定数 a を用いて,式(1)から算出される2地点の1時間降水量の偏角に関する75及び95パーセンタイル値を実線で示した.図-4で図示を省略した降水量のしきい値以上のデータを用いた場合を含めて,式(1)から算出される2地点の降水量の偏角に関するパーセンタイル値は1kmの範囲ごとの平均値と良く一致する.したがって,2地点の1時間降水量の偏角に関するパーセンタイルル値と距離との関係は式(1)で表せると考えた.

2 地点の1 時間降水量の降水量比に関するパーセンタ イル値 R(X)と距離 X との関係は,式(1)を直角座標に変換 することで,次式で表すことができる.

$$R(X) = tan\left[\begin{array}{cc} \frac{1}{2} & -\frac{1}{4} & exp(-a^*X) \end{array}\right]$$
(2)

図-5には、最小二乗法により推定される定数 a を用いて 式(2)から算出される 2 地点の降水量比に関する 75 及び 95パーセンタイル値を実線で示した 図-5 で図示を省略 した降水量のしきい値以上のデータを用いた場合を含め て、式(2)から算出される 2 地点の降水量比に関するパー センタイル値は 1km の範囲ごとの平均値と良く一致す る.したがって、2 地点の 1 時間降水量の降水量比に関 するパーセンタイル値と距離との関係は式(2)で表せる と考えた.ここで、定数 a は 2 地点の降水量比に関する パーセンタイル値が 2 地点の距離の増大に伴う増加の度 合いを規定する定数である.つまり、2 地点の降水量比 に関するパーセンタイル値は、定数 a が大きい(小さい) ほど、2 地点の距離が離れるのに伴って大きく(小さく) なる.

表-2 には,降水量のしきい値別に最小二乗法により推定される定数aを示した定数aと降水量のしきい値は, 75 パーセンタイル値の場合に相関係数が0.99 と有意水準5%で正の相関が有意であるが,95 パーセンタイル値の場合には有意水準5%での有意な相関が認められない. このことから,一般的な降雨の代表とした2地点の降水量比に関する75 パーセンタイル値は降雨強度が高いほど大きくなると考えられる.一方,局地的な降雨の代表とみなす95 パーセンタイル値は降雨強度によらずほぼ一定である.

4 気象擾乱及び地理的条件別の分析

2 地点の1 時間降水量の降水量比と距離との関係につ

いて,降雨を発生させた気象擾乱,2地点の方位,及び 雨量計の位置する地域による影響を把握するために,2 地点のうちの1地点以上で1時間降水量が10mm以上の 場合のデータを用いた解析を行った.

(1) 気象擾乱別の解析

表-2 には、降雨をもたらした気象擾乱別に最小二乗法 により推定される式(2)の定数 a を示した.図-6は、定数 a により式(2)から算出される気象擾乱別の2地点の1時 間降水量の降水量比に関する75及び95パーセンタイル 値を示したものである.これらから、2地点の降水量比 に関する75及び95パーセンタイル値は台風や低気圧の 場合には2地点の距離の増大に伴って緩やかに増加する が 雷雨や停滞前線の場合には急激に増加する.これは、 降雨をもたらす積乱雲群の水平スケールに関係している と考えられ、台風や低気圧の場合には広域に組織化され た積乱雲群によって降雨がもたらされる場合が多く、雷 雨や停滞前線による大雨は少数の積乱雲によって降雨が もたらされる場合が多いためと考えられる

(2) 2 地点の方位別の解析

表-2 には、2 地点の方位別に最小二乗法により推定される式(2)の定数 *a* を示した.これによると、2 地点の1時間降水量の降水量比に関する75及び95 パーセンタイル値の定数 *a* は、南東-北西方向で大きく、北東-南西方向で小さい傾向にある.ただし、2 地点の方位の違いによる定数 *a* の差異は、気象擾乱による差異に比べると小さい.

図-7(a)は,定数 a により式(2)から算出される 2 地点 の1時間降水量の降水量比に関する方位別の95パーセン タイル値と距離との関係である.なお,2 地点の降水量 比に関する75パーセンタイル値は 2 地点の距離が10km 以下では2 地点の方位による差異がほとんどないことか ら図示を省略した.これから,2 地点の降水量比は,2 地点の距離が 5km 程度以上になると,95 パーセンタイ ル値に南東 - 北西方向で大きく,北東 - 南西方向で小さ い傾向が現れる.このような1時間降水量の降水量比の 異方性には,降雨域の構造(形状)や移動方向が関係し ている可能性が考えられる.

(3) 地域別の解析

表-2には,雨量計の位置する地域別に最小二乗法によ

図-7 2 地点における 1 時間降水量の降水量比に関する方位別及び地域別の 95 パーセンタイル値と距離との関係 2 地点のうちの 1 地点以上で 1 時間降水量が 10mm 以上のデータを用いて求めた定数 a により式(2)から算出.

り推定される式(2)の定数 a を示した.これによると,定数 a は北西地域が他の地域に比べて大きいが,関東平野では地域の違いによる定数 a の差異は,気象擾乱による差異に比べると小さい.

図-7(b)は、定数 a により式(2)から算出される 2 地点 の1時間降水量の降水量比に関する地域別の95パーセン タイル値と距離との関係である.なお、2 地点の降水量 比に関する75パーセンタイル値は 2 地点の距離が 10km 以下では地域による差異がほとんどないことから図示を 省略した.これから、2 地点の1時間降水量の降水量比 は、2 地点の距離が 5km 程度以上になると、95パーセン タイル値に北西地域が他の地域に比べて大きい傾向が現 れる.関東平野では、雷雨による大雨事例の割合は、北 部が南部に比べて高く、特に北西地域で高い⁹⁹.雷雨に よる大雨は 表-2 及び図-6 によると他の気象擾乱による 大雨に比べて2 地点の降水量比が大きい.そのため、降 水量比の大きい雷雨の割合が高い北西地域は、その割合 が低い他の地域に比べて、降水量比が大きいと考えられ る.

以上のように,気象擾乱や地理的条件別の2地点の1 時間降水量の降水量比と距離との関係の解析から,2地 点の1時間降水量の降水量比は降雨をもたらす気象擾乱 による影響を大きく受けるが,関東平野では雨量計の位 置する地理的条件による影響は小さいと考えられる.

5 まとめ

本研究では,JR 東日本,気象庁,国交省,及び東京都 の降水量データを用いて,メソスケールにおける2地 点の1時間降水量の降水量比と距離との関係を解析した. 得られた結果は以下のようにまとめられる.

- (1) 2 地点の 1 時間降水量の降水量比に関するパーセン タイル値と距離との関係式を提示した.
- (2) 一般的な降雨の代表とした2地点の1時間降水量の 降水量比に関する75パーセンタイル値は降雨強度 が高いほど大きくなる.一方,局地的な降雨の代表 とみなす95パーセンタイル値は降雨強度によらず ほぼ一定である.
- (3) 2地点の1時間降水量の降水量比に関する75及び95 パーセンタイル値は,台風や低気圧の場合には2地

点の距離の増大に伴って緩やかに増加するが, 雷雨 や停滞前線の場合には急激に増加する.

- (4) 2 地点の1時間降水量の降水量比は2 地点の距離が 5km 程度以上になると,95 パーセンタイル値に南東
 ・北西方向で大きく,北東-南西方向で小さい傾向 が現れる.また,関東平野の北西地域が他の地域に 比べて大きい傾向が現れる.
- (5) 2 地点の1 時間降水量の降水量比は,降雨をもたら す気象擾乱による影響を大きく受けるが,関東平野 では地理的条件による影響は小さいと考えられる.

謝辞:本研究では,気象庁,国交省,東京都,及び JR 東日本の降水量データを利用しました.それぞれの機関 において観測とデータの保存・整理に従事された方々に 深く感謝申し上げます.また,貴重なご意見を頂きまし た査読者の方々に深く感謝申し上げます.

参考文献

- 1) 地盤工学会:豪雨時における斜面崩壊のメカニズム及び危険 度予測,地盤工学 実務シリーズ23,丸善,184p.,2006.
- 2) 井良沢道也,田口隆男:降雨特性を考慮したテレメータ配 置計画の検討,新砂防, Vol.49, pp. 22-27, 1996.
- 3) 佐溝昌彦,和田昭夫,紙田茂,村石尚,杉山友康:鉄道 防災情報システムと雨量計配置に関する一考察,土木学会第 48回年次講演会講演集, pp.340-341,1995.
- 4) 仙台管区気象台調査課:降雨特別調査観測について,研究時 報, No.26, pp.16-17, 1974.
- 5) 鈴木博人,中北英一,高橋日出男:降雨の空間代表性-鉄道 と気象庁の降水量データを用いた解析-,水工学論文集, Vol.52, pp.187-192,2008.
- 6) 加藤 光:防災情報システムの導入, Japan Railway Engineers' Association, Vol.32, No.11, pp.18853-18856, 1989.
- 7) 国土地理院,測量計算,http://vldb.gsi.go.jp/sokuchi/surveycalc/ main.html, 2008年9月30日.
- 8) 二宮洸三:雨とメソシステム,東京堂出版,242p.,1981.

(2008.9.30 受付)