GCM降水量データの統計的バイアス補正手法に関する 一考察

A STUDY ON A STATISTICAL BIAS CORRECTION METHOD FOR GCM RAINFALL DATA

猪股広典1・竹内邦良2・深見和彦1 Hironori INOMATA, Kuniyoshi TAKEUCHI and Kazuhiko FUKAMI

 ¹正会員 工修 独立行政法人土木研究所 水災害リスクマネジメント国際センター (〒305-8516 茨城県つくば市南原1-6)
²正会員 工博 独立行政法人土木研究所 水災害リスクマネジメント国際センター (〒305-8516 茨城県つくば市南原1-6)

A statistical bias correction method for GCM daily rainfall was applied. The method relates GCM daily rainfall with ground observed rainfall data based on a probability of non exceedance. In this paper, the prepared 26 year GCM daily rainfall (1979-2004) for present climate condition was divided into two periods. One period is a calibration period to estimate parameter values of the bias correction method (1979-1998: 20 years) and the other one is validation period (1999-2004: 6 years) to check the validity. As a result of verification, the accuracy of the bias correction method was not fully acceptable and it is found that there are some cases that the relation established for calibration period between GCM rainfall data and ground observation was not uniform in validation period. From that perspective, the essential points of statistical bias correction method for climate change study will be discussed in the paper.

Key Words : GCM rainfall data, a statistical bias correction method, observed rainfall data, calibration period, validation period

1. はじめに

IPCC第4次報告書では、豪雨の発生頻度および強度が 地球温暖化によって増加することを予測している¹⁾.実際にここ数年日本でも地球温暖化が一因と考えられる豪 雨の発生頻度が増えており各地で被害が発生している²⁾. 地球温暖化によって将来発生すると想定される豪雨災害 に対応するためには、どの程度の強度の雨がどの程度の 頻度で発生するのかを把握し、それに向けた対策を立案、 実施していかなくてはいけない.現在、将来の地球温暖 化影響下での雨量強度および頻度についての情報として はGeneral Circulation Model(以下GCM)の予測計算結果 に依るのが一般的であり、IPCCレポートをはじめとし て地球温暖化の影響について述べている多くの報告が GCMのシミュレーション結果をもとにして考察を行っ ている.河川計画や河川流域規模での洪水流出について 考察する際には、対象とする流域の中に降る雨を定量的

に把握する必要があるが、現在までGCMの計算結果に ついては気候値としての精度検証や広い領域についての 精度検証は数多く行われてきているが3)45),河川流域単 位での精度検証はあまり多く行われていない. 著者らは 日本の吉野川流域を対象として気象研究所と気象庁共同 で開発した空間分解能20kmのAtmospheric General Circulation Model (以下GCM20)の降水量データの精度 について地上観測降水量データを用いて検証を行い、降 雨強度が小さい降水についてGCM20降水量は地上観測 値と比較して頻度が大きく、逆に降雨強度が大きい降水 について頻度が小さいことを確認した⁶. 地球温暖化影 響下での豪雨災害について考えるにあたっては、特に降 雨強度が大きい降水についての情報をできる限り正確に 把握する必要があるためGCM20の降水量データを河川 計画で利用するにあたってはなんらかの補正を行う必要 があることを併せて指摘した.現在までに、GCMの計 算結果を河川計画や地域レベルでの検討に用いるために ダウンスケール手法について多くの研究が行われてきて

いる78. ダウンスケーリングには大きく物理的ダウンス ケーリング⁷と統計的ダウンスケーリング⁸に分けられる. 詳細について文献を参考にしていただきたい. 統計的ダ ウンスケーリングは、現況のGCMの再現結果と観測値 との間で得られた統計的な関係が将来も変わらないとい う仮定が成立するかを証明することが難しいものの、物 理的ダウンスケーリングと比較して計算負荷が小さいた め多くの事例検討、多くの地域での検討を行うことがで きることが特徴として挙げられる.本研究では、日本お よび世界の任意地点・任意河川流域について容易に適用 できる手法の開発を目的として、統計的な手法で GCM20降水量データを影響評価に利用できるよう補正 する手法を適用する. 降水量に関する統計的ダウンス ケーリング手法については現在までに様々な手法が開発 されてきており、大きくRegression MethodとWeather Generator⁸に大別される. Regression Methodでは, 大規 模な大気物理量と小規模の大気物理量と直接定量的に関 連付けを行う.大気物理量の関連付けの方法(線形式、 非線形式、ニューラルネットワーク等)や、関連付けに 用いる大気物理量の種類に応じて様々な研究が行われて きており, 例えばDibike et al.⁹⁾, Wilby et al.¹⁰⁾, Diaz-Nieto et al.¹¹⁾, Harpham et al.¹²⁾, Conway et al.¹³⁾による研究が挙げ られる. またWeather Generatorは、大気物理量を統計モ デルで表現するものであり, 代表的なものとして Wilks¹⁴, Charles et al.¹⁵による研究が挙げられる。Wilby et al.¹⁰⁾の手法では、最初に水平2.5度メッシュデータである NCEP再解析データから得られる大気物理量(風速や相 対湿度等)と観測降水量を統計的に関連付け、次に GCMで計算された将来の大気物理量予測値に対してそ の統計的関係を適用することで将来予測降水量を推定す る. 列挙したその他のRegression MethodやWeather Generatorの研究においても、観測降水量と大気物理量と の間で統計的な関係を構築し、その関係を用いることで 将来の予測降水量を推定している.本研究ではそれらの 研究とは対照的に、気象研究所のGCM20によって計算 された現況の降水量と観測された降水量を統計的に関連 づけることでGCM20降水量のバイアスを補正する手法 を適用し、その適用性について考察する. 取り扱う物理 量が降水量だけであるため、取扱・適用が他の統計的な ダウンスケーリング手法と比較して簡便であることが長 所として挙げられる.

2. 適用流域、使用するGCM20降水量データおよび

観測データについて

本検討では、2004年に多くの台風の通過により大きな 洪水災害が発生し²、今後も洪水に対して警戒が必要と 考えられる日本の吉野川流域(流域面積:3,750 km²)を 対象として選定した.地上観測データとしては,吉野川 流域内の9箇所のアメダス観測地点の降水量データを使 用した.また,GCMの降水量データとしては気象研究 所および気象庁により共同で開発されたGCM20のデー タを使用した¹⁶¹⁷⁾.このGCM20は全球水平分解能20km, 鉛直60層のモデルである.海面水温としては,年々変動 がある観測された海面水温を与えている.吉野川流域内 の9箇所のアメダス観測地点およびGCM20の各グリッド の中心位置を図-1に示す.図-1のアメダス観測地点上の 数字はアメダスの観測所IDを示す.GCM20の降水量 データおよび観測降水量データ共に,1979年から2004年 の26年間を用意した.

図-1 吉野川流域のアメダス観測地点およびGCM20の各グリッ ドの中心位置

3. バイアス補正手法の適用について

(1) バイアス補正手法の概要

以降で行う検討では、時間分解能は日単位で統一して 行う.また、GCM20のグリッドデータとアメダス観測 値の比較については、アメダス観測地点から一番距離が 近いGCM20のグリッドデータを比較対象として用いた.

最初に、GCM20およびアメダスの日降水量データを 月毎に分類し、各月について各日降水量の非超過確率を 求め、GCM20降水量と観測値の各非超過確率降水量値 について比率を算出する(式(1)、図-2).次に、式(2) に示すように、その非超過確率毎に定められたGCM20 降水量と観測値の比率は将来も変わらないとして GCM20の将来予測降水量にその比率を乗じることで将 来の降水量を推定する.

$$\alpha_{m_NE} = R_{m_NE_Obser} / R_{m_NE_GCM 20_Pre}$$
(1)

 $R_{NE_GCM \ 20_Fut_Mod} = \alpha_{m_NE} \times R_{m_NE_GCM \ 20_Fut}$ (2)

ここに、m:月、NE:非超過確率、 $R_{m_NE_Obser}$: m月の非超過確率 NEの観測日降水量(mm/day)、 $R_{m_NE_GCM 20_Pre}$: m月の非超過確率 NE のGCM20 現況日降水量(mm/day)、 α_{m_NE} : m月の非超過確率 NEの GCM20 と観測日降水量の比率, $R_{m_NE_GCM20_Fut}$: *m*月の非超過確率 *NE*のGCM20 将来日降水量(mm/day), $R_{m_NE_GCM20_Fut_Mod}$: *m* 月の非超過確率 *NE*の補正したGCM20将来日降水量 (mm/day)

図-2 GCM20降水量と観測値の補正比率 α_{m} NE の算出概念図

(2) キャリブレーション期間と検証期間の設定

本研究では本バイアス補正手法の妥当性を検討するために、キャリブレーション期間と検証期間を設定した. キャリブレーション期間では3.(1)で述べたバイアス 補正手法の α_{m_NE} の算出を行い、検証期間ではキャリ ブレーション期間で算出した α_{m_NE} を用いてGCM20日 降水量を補正し、観測値の再現性について検証を行う. ここでは、キャリブレーション期間を1979年から1998年 の20年間、検証期間を1999年から2004年の6年間とした.

4. 結果

ここでは、検証期間の平均年降水量、平均月降水量お よび日降水量についてバイアス補正の適用結果を確認す る. 図-3に9地点のアメダス観測地点のうち、ID:71191 (京上)およびID:74056(本川)の2地点における検証 期間の平均年降水量を示す. 図-3より, 平均年降水量に 関しては、バイアス補正手法の適用によって精度が改善 されていることが分かる.相対誤差について71191地点 では16.6%から6.57%,74056地点では39.9%から21.2%に 向上した. 観測地点全体についても9箇所中8箇所で精度 が向上し、相対誤差は19.4%から12.6%となりバイアス 補正手法の適用で精度が改善されることが分かった.図 -4に,71191地点および74056地点の検証期間内の平均月 降水量を示す. 71191地点, 74056地点共に平均月降水量 についてはバイアス補正手法を適用することで精度が改 善される月(例えば71191地点9月,74056地点8月など) が存在する一方で、改善されない、または改善され

図-3 平均年降水量図(左:71191地点、右:74056地点、エ ラーバーは標準偏差を示す.赤:観測値,青:GCM20, 緑:補正したGCM20)

たとしてもそれほど大きくは改善されない月(例えば 71191地点8月,74056地点7月など)が存在することが分 かる.表-1に,補正前の平均月降水量の相対誤差が10% 以上である地点のうち,補正により相対誤差が10%未満 に改善される地点数の割合を月毎に示した.表-1より, 補正により精度が改善される地点数の割合が一番高かっ た月およびその割合は4月の5割強である.全体としては 2割程度となった.表-1の(d)は補正により精度が悪く なった地点,または精度が改善されても相対誤差で10% 未満までは改善されなかった地点数であり,補正によっ て相対誤差が10%以内にまで収まった地点数よりも,

10%以内に収まらなかった地点数のほうが多い結果となった.図-5はバイアス補正前およびバイアス補正後の 日降水量の観測値に対する再現性を確認するためのクオ ンタイルークオンタイル図の2事例である.ここでは図-4に示されている71191地点8月をバイアス補正により精 度が向上しなかった事例,74056地点8月をバイアス補正 により精度が向上した事例として示している.この図で は、バイアス補正された降水量を示す緑色のプロットが 45度線に近づけば近づくほどバイアス補正により再現精 度が向上していることを示す.バイアス補正により精度 が向上していることを示す.バイアス補正により精度 が向上していることを示す.バイアス補正により精度 が向上しなかった事例である71191地点8月では、日降水 量がおよそ100 mm/dayよりも大きい範囲でバイアス補正 後の降水量が45度線から離れていることが分かる.特に、 極値では観測値が367 mm/dayであるのに対し、バイアス 補正されたGCM20降水量は1196 mm/dayとなった.相対

	(a)	(b)	(c)	(d)
月	補正前の平均	補正前の平均月雨量の	b/a	a-b
	月雨量の相対	相対誤差が10%以上で	(%)	
	誤差が10%以	あり、かつ補正により		
	上の地点数	相対誤差が10%未満に		
	(a)	なる地点数 (b)		
1	9	3	33.3	6
2	9	3	33.3	6
3	9	0	0.0	9
4	9	5	55.5	4
5	6	2	33.3	4
6	8	3	37.5	5
7	8	1	12.5	7
8	9	3	33.3	6
9	7	1	14.3	6
10	9	0	0.0	9
11	8	0	0.0	8
12	7	1	14.3	6
Ave.	8.1	1.8	22.2	6.3

表-1 補正により平均月雨量の相対誤差が10%以上から10%未満 に改善される地点数の割合

誤差としては225%となり非常に大きな誤差を含んでいる. その一方でバイアス補正により精度が向上した事例である74056地点8月では,バイアス補正後のGCM20降水量は上位数点を除いて概ね45度線に比較的近づいており,絶対誤差も比較的小さくなっていることが分かる.

極値においても観測値が483 mm/dayに対し、バイアス補 正後のGCM20降水量は328 mm/dayとなっており、71191 地点8月と比較して誤差は小さい.図-6は、バイアス補 正前およびバイアス補正後のGCM20日降水量の観測値 の再現精度を相対誤差について示したものである.相対 誤差としては、各地点、各月の非超過確率80%以上の日 降水量を対象として観測値とGCM20日降水量の相対誤 差の平均値を計算し、その値の全観測所の平均値を示し ている.図-6より、冬季(12,1,2月)についてはバイア ス補正により日降水量の再現精度が向上していることが 分かる.その一方で、それ以外の季節ではバイアス補正 を行っても日降水量の再現精度はあまり向上しない地点 が多いことが分かる.

以上より,平均年降水量ではバイアス補正により全体 的な精度の向上がみられたものの,平均月降水量および 日降水量についてはバイアス補正により精度が向上する 場合と向上しない場合が存在することが分かった.次節 では本バイアス補正手法により精度が向上する場合と向 上しない場合における要因について考察するとともに, 本バイアス補正手法についての考察を併せて行う.

5.考察

本研究で適用したバイアス補正方法は、各月について各 日降水量の非超過確率を求め、GCM20降水量と観測値

図-5 71191地点8月および74056地点8月の日降水量のクオンタ イルークオンタイル図

図-6 バイアス補正前と補正後のGCM20日降水量の観測値に対 する相対誤差(全9観測所の平均値)

の各非超過確率降水量値についての比率である α_m NE

を算出し、その値は将来も変化しないと仮定して GCM20の将来予測降水量にその値を乗じることで将来 の降水量の推定値を得るというものである.ここでは

 $\alpha_{m NE}$ が一定であるという仮定が成立しているかを調

べた. 図-7は、非超過確率毎のGCM20日降水量と観測 値の比率をキャリブレーション期間および検証期間につ いてプロットしたものである.上が71191地点8月で下が 74056地点8月である.74056地点8月は、4.で述べたと おり補正により再現精度が向上した事例であり、図-7下 の図を見ると、キャリブレーション期間と検証期間につ いてGCM20日降水量と観測値の比率が非超過確率毎に 概ね一致していることが分かる.言い換えると、キャリ ブレーション期間で設定したGCM20日降水量と観測値

の比率である $\alpha_{m NE}$ が検証期間でも大きく変化してお

らず、本バイアス補正手法の前提である $\alpha_{m \ NE}$ 一定が

概ね成り立っている。それに対し、バイアス補正手法の 適用によって精度が向上しなかった事例である71191地 点8月では、図-7上の図より、非超過確率でおよそ60% を超える範囲でキャリブレーション期間と検証期間で GCM20日降水量と観測値の比率が一致しないことが分

かる. 言い換えると、 $\alpha_{m NE}$ がキャリブレーション期 間と検証期間で変化しているため、本バイアス補正手法 の前提である $\alpha_{m NE}$ 一定が成り立っておらず、このこ とが本バイアス補正手法を適用しても精度が向上しない 原因と考えられる. 図-8は、キャリブレーション期間お よび検証期間のGCM20日降水量と観測値の比率を示し たものである. 比率としては、各地点、各月の非超過確 率80%以上の日降水量を対象として観測値とGCM20降 水量の比率の平均値を計算し、その値の全観測所の平均 値を示している. 図-8より、冬期は比較的キャリブレー ション期間内と検証期間内でGCM20日降水量と観測値 の比率に大きな変化はないが、それ以外の季節において は冬季と比較して2期間で比率が変化していることが分 かる. 今回はGCM20と観測値の関係について地形およ び気象面からの検討は行っていないが、GCM20と観測 値の比率が2期間で変化する地点と変化しない地点が存 在する原因として、地形性降雨に代表されるような地形 的・気象的な要因が原因となっている可能性があり、こ のような面からGCM20と観測値の関係を調べることは 補正手法の適用性を向上させるための今後の検討課題で ある.本研究のバイアス補正方法では2期間で比率があ まり変化しない冬季においては精度の向上が期待できる が、冬季以外では冬季と比較してGCM20日降水量と観 測値の比率の変動が大きいため冬季と同程度の精度向上 はできないと考えられる. 将来的には冬季気温が上昇し, 冬季についても降水量が変化することがIPCC第4次報告 書では予測されている¹⁸⁾. それに伴い冬季にGCM20日降 水量と観測値の関係が非線形に変化し、本バイアス補正 手法の適用性が低下する可能性がある. さらに夏季にお いてはその傾向が一層顕著になることも想定される.現 時点では本バイアス補正手法では観測降水量と関連付け られているGCM20の物理量は降水量のみであるため、 気温の上昇、それに伴う水蒸気量の上昇といった大気状 態の変化を反映することができない. 将来の気候変動影 響下でも一定の精度を確保することを目指すために、上 述した地形および気象面からGCM20と観測値の関係を 検討することに加えて本バイアス補正手法に気温や風速 といった降水量以外にGCM20から得られる大気物理量 を関数として組み込み,大気の物理状態を反映できる, より詳細な手法に改良する必要がある.

また4. で結果を示した通り、極値における再現性が十 分ではない. 図-7からも分かるように、GCM20降水量 と観測値の比率が2期間で大きく変化が見られる71191地 点8月と合わせて、2期間で比率の分布が全体的に似た形 状を示している74056地点8月でも極値でのばらつきが大 きく、極値でのGCM20と観測値の統計的な関連付けを 行うことの難しさを示唆している. Wilby et al.¹⁰による と、統計的ダウンスケーリングでは降水量等の平均的な

図-7 キャリブレーション期間および検証期間の非超過確率毎 のGCM20日降水量と観測値の比率(上:71191地点8月、 下:74056地点8月)

図-8 キャリブレーション期間および検証期間の観測値と
GCM20日降水量の比率(全9観測所の平均値,エラーバーは標準偏差を示す.)

値を求めることが多いため、極値の再現性はやや劣ると されている.またCharles et al.¹⁵⁾やHarpham et al.¹²⁾の結果 においても、極値での観測値の再現性がやや劣るものと なっており、極値の取り扱いについては今後併せて検討 を行う必要がある.

6. まとめ

本研究では吉野川流域内のGCM20日降水量および観 測アメダス値を用いて、GCM20日降水量を対象とした バイアス補正手法を適用した.バイアス補正手法は, GCM20日降水量と観測値の非超過確率雨量毎の比率を 求め、その比率を他期間のGCM20日降水量に乗じるこ とで日降水量の推定量を得るものである.本研究では GCM20日降水量と観測値の非超過確率雨量毎の比率を キャリブレーション期間のデータを用いて求め、その比 率を検証期間のGCM20日降水量に乗じ、観測値と比較 することで手法の妥当性を検証した. その結果, 平均年 降水量については一定の精度向上が期待できるが、平均 月降水量と日降水量については、冬季は精度が向上する のに対してそれ以外の季節ではバイアス補正の効果が冬 季と比較して効果が低いことが分かった. バイアス補正 手法により精度が向上しないのは、非超過確率毎の GCM20日降水量と観測値の比率がキャリブレーション 期間と検証期間で変化していることが原因であることが 分かった. 今後は、地形および気象面からの精度検証に 加えて、地球温暖化の影響で観測降水量とGCM20降水 量との間の非線形性が強まることを考慮すると, GCM20から得られる降水量だけを観測値と関連付ける のではなく気温や風速といった降水量以外にGCM20か ら得られる物理変数を組み込み、大気の状態をできるだ け反映できる補正手法に改良することで適用性を広げて いく必要がある.また、降水極値に対しても別途検討を 行っていく必要がある.

謝辞:本研究は文部科学省21世紀気候変動予測革新プロ グラム「超高解像度大気モデルによる将来の極端現象の 変化予測に関する研究」のもと、地球シミュレータを用 いて行われました。

参考文献

- IPCC, AR4 Report, Working Group 1, The physical science basis, Technical summary pp.52, 2007
- 国土交通省河川局:近年の豪雨災害の発生状況について、 http://www.mlit.go.jp/river/basic_info/jigyo_keikaku/gaiyou/kiko uhendou/pdf/080219_shiryo_1.pdf、2008年2月
- 3) 和田一範、川崎将生、冨澤洋介、楠昌司、栗原和夫:高解 像度全球モデルおよび地域気候モデルを用いた地球温暖化 にともなう洪水リスクの評価、水文・水資源学会誌、 Vol.21, No.1, pp.12-22, 2008年1月
- 4) 和田一範、楠昌司:高解像度全球モデルを用いた地球温暖 化にともなう四国地方の洪水・渇水リスクの評価、水工学 論文集、第52巻、pp.529-534、2008年2月
- L.O. Mearns, F. Giorgi, L. McDaniel, C. Sheilds: Analysis of daily variability of precipitation in a nested regional climate model: Comparison with observations and doubled CO₂ results, Global Planet Change, 10, pp.55-78, 1995

- 猪股広典、竹内邦良、深見和彦:GCM計算雨量と地上観 測雨量との対応および補正手法の検討、水文・水資源学会 2008年度研究発表会要旨集、pp.150-151、2008年8月
- L. O. Mearns, F. Giorgi, P. Whetton, D. Pabon, M. Hulme, M. Lal: Guidelines for Use of Climate Scenarios Developed from Regional Climate Model Experiments, 2003, http://www.ipccdata.org/guidelines/dgm_no1_v1_10-2003.pdf
- RL Wilby, SP Charles, E Zorita, B Timbal, P Whetton, LO Mearns: Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Method, 2004, http://www.ipccdata.org/guidelines/dgm_no2_v1_09_2004.pdf
- Y.B. Dibike, P. Coulibaly: Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models, Journal of Hydrology, 307, pp.145-163, 2005
- R.L. Wilby, C.W. Dawson, E.M. Barrow: SDSM-a decision support tool for assessment of regional climate change impacts, Environmental Modelling & Software, 17, pp.147-159, 2002
- Jacqueline Diaz-Nieto, R.L. Wilby: A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the river Thames, United Kingdom, Climatic Change, 69, pp.245-268, 2005
- C. Harpham, R.L. Wilby: Multi-site downscaling of heavy daily precipitation occurrence and amounts, Journal of Hydrology, 312, pp.235-255, 2005
- D. Conway, R.L. Wilby, P.D. Jones: Precipitation and air flow indices over the British Isles, Climate Research, 7, pp.169-183, 1996
- D.S. Wilks: Multisite downscaling of daily precipitation with a stochastic weather generator, Climate Research, 11, pp.125-136, 1999
- S.P. Charles, B.C. Bates, J.P. Hughes: A spatiotemporal model for downscaling precipitation occurrence and amounts, Journal of Geophysical Research, Vol. 104, No. D24, pp31,657-31,669, 1999
- 16) Mizuta, R., K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai and M. Nakagawa: 20 km-mesh global climate simulations using JMA-GSM model-Mean Climate States-, J. Meteor. Soc. Japan, 84, pp.165-185, 2006
- 17) Shoji Kusunoki, Jun Yoshimura, Hiromasa Yoshimura, Akira Noda, Kazuyoshi Oouchi and Ryo Mizuta: Change of Baiu Rain Band in Global Warming Projection by an Atmospheric General Circulation Model with a 20-km Grid Size, J. Meteor. Soc. Japan, Vol. 84, No. 4, pp.581-611, 2006
- IPCC, AR4 Report, Working Group 1, The physical science basis, pp.883, 2007