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    Sloshing in liquid natural gas (LNG) tankers includes extremely large deformations of the free 

surface. To better understand such deformations, we simulated the surge and pitch phenomenon in a 

two-dimensional tank using smoothed particle hydrodynamics (SPH) method. The resulting free surface 

elevation at tank boundary agreed closely with literature data when the tank had surge excitation. When 

the excitation frequency approached the highest natural frequency, impulsive pressure on the top of the 

tank and wave breaking appears. When the surge-pitch motions were coupled and had zero phase 

difference, the wave elevations were smallest. Conversely, when the coupled motions had 180degrees 

phase difference, the wave elevations were highest. The SPH method appears useful for understanding 

sloshing. 
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1. INTRODUCTION 
 

Sloshing induced by the motion of tanks 

involves extremely complete nonlinear water 
motions such as waves breaking, waves overturning, 

hydraulic jumps and so on. SPH method is a 

meshfree, Lagrangian, particle method that can 
naturally handle problems with large deformation 

and free surface1). Thus, SPH method have been 

applied widely in fluid mechanics: Monaghan et at 
showed the applicability of SPH when applied to 

different free surface flow problems with waves 

breaking, such as breaking dams2), solitary waves 
traveling onto a beach3), weighted box sinking 

rapidly into a wave tank4) and so on. Oger et al5) 

presented the test cases of wedge water entries 
aiming at an accurate numerical simulation of 

solid-fluid coupling in a free surface flow. Tulin and 
Landrini6) focused on the ship-generated waves and 

showed the SPH’s advantage of high resolution, and 

sufficient to capture breaking. 
Many papers have reported on the sloshing 

phenomenon in a two-dimensional rigid rectangular 

tank undergoing periodic horizontal, vertical, and 
roll excitations. Frandsen7) introduced a fully 

non-linear finite difference model to analyze the 

sloshing wave motion in a 2-D tank which is moved 
both horizontally and vertically. Faltinsen et al8) 

used a discrete infinite-dimensional modal system in 

which the free surface motion and velocity potential 
are expanded in generalized Fourier series. This 

general multidimensional structure of the equations 

is approximated to analyze sloshing in a rectangular 
tank with finite water depth. Guillot9) applied a 

Runge-Kutta discontinuous Galerkin (RKDG) finite 

element method to the liquid sloshing problems 
restricted to shallow water. Chen10) used a 

time-independent finite-difference method to 

intensively study the combined effects of surge, 
heave, and pitch motions on sloshing viscous fluid. 

All these models are successful to simulate sloshing 

problems but they are invalid when either 
overturning waves or wave breaking appear.  

In this paper SPH models for the study of 

nonlinear sloshing in a two-dimensional rectangular 
tank are presented. This model shows its 

applicability in simulating the phenomenon of the 

impacts on ceils of the tanks and wave breaks. The 
effects of phase differences between pitch and surge 

excitations are discussed. 

 



 

 

2. SPH MODEL 
    

(1) Governing equations 
The governing equations for inviscid fluid 

dynamics are the Euler equations. If the Greek 

superscripts   and   are used to denote the 

coordinate directions, the Euler equations for a 

parcel of fluid are:  
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where /d dt  indicates the Lagrangian derivative, 

  is the fluid particle density, t  is time, v  is the 

particle velocity, p  is the fluid pressure, and F  

is the body force. 

To transform the above continuous fluid 

parameters to discrete values, by the smoothing kernel 

function  ',W hr - r , the integral interpolation of any 

function  A r
 
is defined approximately by11) 

      


  ' 'A A W dr r r - r' r , (3) 

where A is supposed to be smoothed in the area  , 
h  is the smoothing length defining the influence area 

of W . Because of the compact support of W , the 

spatial derivative of A  can be approximately 

converted to the derivative of the kernel function: 

      


   ',A A W h dr r' r - r' r . (4) 

Using the above concepts, any quantity  A r  of 

particle i , whether scalar or vector, can be 

approximated by the direct summation of the relevant 

quantities over its neighboring particles, denoted by j  
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Similar the derivative of  A r  can be expressed 

as 
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Then the SPH formulation of governing equations 

(1) and (2) can be written  
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Fig. 1 Definition sketch of coordinate system 

 

where ij i jv v v    , and ij  is an artificial 

viscosity term that stabilize the numerical algorithm12):  

 
0

0 0

ij ij ij

ij ij

ijij

ij ij

c    



 
 

 
 
  

v r

v r

, (9) 

where 

1 2
2 2 2 4

div
, ,

2
div curl 10

ij ij ij i

ij i
i

ij ij i i

hk k
k

c

h
 


  

  

v r v

r v v

1 1
( ), ( ),

2 2

1
( ), , ,

2

0.01, 0.

ij i j ij i j

ij i j ij i j ij i j

c c c

h h h

  

  

   

     

 

v v v r r r  

The use of different kernels in SPH is the 

analogue of using different difference schemes in 
finite difference methods. Colagrossi et al12) 

introduced a new highly stable kernel that is 

computationally efficient: 

  

2
2

2
2

0

, ,

2

h h

h h

e e
W h

e e d










        
   

        
   




 
 
  
 



r

r
r

r r

, (10) 

where r  is the distance between two particles，

3h  . 

Let o’x’z’ be an absolute coordinate system 

and oxz is a coordinate system that moves with the 

tank (Fig. 1). If the length of the tank is l , height of 

the tank is H, unperturbed depth of the water is d,，

according to the linear theory13)，the nth natural 

frequency of fluid oscillations in the tank is 
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where n=1, 2, 3. 

We specify a forcing of surge and pitch 

according to ： 

    sins s s sx t A t   , (12) 

    0 sinp p pt t     , (13) 

where sx is the displacement of the surge excitations, 

sA  and 0  are the amplitudes of surge and pitch,，

respectively, s  and p  are the surge and pitch 

frequencies, s  and p  are the initial phases of 

surge and pitch, p  is the angular displacement of 

pitch. 
In coordinates that are fixed relative to the 

moving tank, the body forces can be written as 

 1 2sin 2i p i p i p p i sF g z x w x           , (14) 

 2 2cos 2i p i p i p p iF g x z u         , (15) 

Where 1

iF  and 2

iF  are the components of body 

force on particle i  in the x -direction and 

z -direction, g  is the acceleration of gravity,，

ix and iu  are the displacement and velocity at 

particle i  in the x -direction, whereas iz and iw  

are the corresponding displacement and velocity at 

particle i  in the z -direction. Guillot9), Chen10), 

Huang14) and Celebi and Akyildiz15) adopted similar 
expressions. 
 

(2) Equation of State  

Here we consider the fluid flow as 

compressible and use the equation of state proposed 
by Monaghan2): 
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where 7   and 0 1000   for water. The 

parameter B is chosen to keep the amplitude of 

density oscillations around the reference density 0  

less than 1 %. 

 
(3) Boundary Conditions  
    We adopted the treatment approach proposed 

by Gong16)  to determine pressure at a solid 

boundary (Fig. 2). The boundary is built with three 
layers of fixed particles: a layer of boundary 

particles on the solid wall and two layers of virtual 

particles outside the solid wall. The pressure of the 
boundary particles is used to solve the momentum 

equations at the fluid particles near the boundary. 

Pressures of the boundary particles are obtained 

through the following approach. For a given 

boundary particle B, its pressure is obtained by 
interpolation using the pressure of fluid particles in 

the near-boundary area around B that can be 

imagined as a pressure “sensor” during an 
experiment. Only the fluid particles that lie within a 

distance d  (set proportional to the smoothing 

length) from the boundary and within the projected 

cylinder of the “sensor” SensorS  are used to estimate 

the pressure of point B. First, we project the fluid 

particles to SensorS . The pressure of the projected 

point '
1jP  is obtained from the fluid particle 1jP  

considering the hydrostatic pressure due to the 

vertical distance d  between the particle and its 

projection, i.e. '
1 1j jP P g d   . Secondly, SensorS is 

divided into N parts whose characteristic length is 
proportional to smoothing length. Assuming the 

area of the i th part is idS , the pressure iP  at i th 
part is the average of the pressure '

1jP  of all the 

projected points in part idS . Then the pressure BP   

at particle B is taken as 
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Fig. 2 Boundary treatment 
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Fig. 3 Tank dimensions and wave probe positions 
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Fig. 4 Free surface elevation at wave probe at Probe1 when sA =0.032 m, s 1w =0.9 w  

(Compared with Faltinsen et al's results8)) 

 

 

(4)Time Integration 
The discrete SPH equations above are 

integrated in time by the Leap-Frog (LF) method. 
The advantage of the LF algorithm is its low 

memory storage requirement in the computation and 

the efficiency for one force evaluation per step: 
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3. NUMERICAL SIMULATION OF 

SURGE 
 

In this section, simulation results for nonlinear 
sloshing in a smooth rectangular tank due to 
horizontal excitation are compared with the 
experimental and theoretical results given by 
Faltinsen et al8) . 
 
(1)Parameters and Particles Distribution 
 

As shown in Fig. 3, l is 1.73 m, H is 1.05 m and d 
is 0.6 m. According to equation (11) the highest 

natural frequency is 1 = 3.76 Hz. A wave probe was 

placed 0.05 m from the left wall. The origin of the 

coordinate system was at the lower left corner. The 

computational domain was 0 x  1.73 m, 0 z  
1.05 m. The initial separation between the fluid 

particles in the x and z directions were both 0.01 m，
and 10380 fluid particles and 1702 boundary particles 

were used in the simulations. A constant time step of 
55 10  s was used; for a 50-s-long series of 61 10  

time steps, it took about 120 hours using an AMD 

Athlon64x2 4000+ CPU. 

 

(2)Numerical Test 

We set sA = 0.032 m and 10.9s   to 

match the conditions of Falt insen et al 8)’s 

experimental results. According to Fig. 4, the free 

surface elevation at Probe1 is in good agreement 
with their experimental results. Comparison with 

inviscid theoretical results suggests however that 

dissipation reduces the amplitude in the third and 
fourth “wave packet”. Accordingly, it is likely that 

the good agreement with experiment depends on a 

 

 
Fig. 5 Water impact on top ceiling 

 

  

 
Fig. 6 Free surface elevations in tanks with and without top 

ceiling 
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fortuitous choice of the parameters in the artificial 

viscosity term in our SPH simulation. Also during 

the third and fourth “wave packet”, phase shifts 
between our results and experimental data can be 

observed. This kind of shifts always happens when 

the wave amplitudes are small. We can also see the 
phase difference between Faltinsen et al8)’s and 

theoretical results, and it is visible that our SPH 

results have less shifts from the experiment 
comparing to Faltinsen et al8)’s theoretical results. 

As shown in Fig. 5, when water impacts on the 

ceiling, the free surface overturns and some water 
particles splash down. Fig. 6 compares the surface 

elevation between tanks with and without a top 

ceiling during one “wave packet”. It is evident that 
they do not agree near the peaks of the “packets” 

(nearly 5% difference), where the water impacts on 

the ceiling (as shown in Fig. 5) happened. All these 
figures show that when a forceful impact occurs, the 

numerical dissipation of the SPH method becomes 
significant. 

 
4.COUPLED SURGE AND PITCH 
MOTION 
 

(1) Parameters and Particles Disposition 

We adopted the same tank that was used to 

simulate the surge motions (Fig. 3). sA = 0.005 m, 

10.95s  , 0 1 ,  
10.9p  . 5 cases are 

considered: pure surge excitation, pure pitch 
excitation, coupled excitations when phase 

difference is 0  ,、coupled excitations when phase 

difference is 90  and coupled excitations when 

phase difference is 
180 . 

 

(2) Analyses of the results 
   Fig. 7 demonstrates the free surface elevation at 
the probe under different excitations, peaks of the 

envelope appear near t=16 s. While considering the 

coupled excitations of surge and pitch (Fig. 7 

(c)(d)(e))，the results are different from the linear 

superposition of pure surge and pure pitch，which  

indicates the nonlinearity of sloshing. When the 

phase difference is 0

, the amplitude is smallest, 

and smaller than the superposition of the two single 
excitation cases, meaning that the couple effect is 

negative. By contrast, when the phase difference is 

90 degrees, the elevation is almost the same as the 
two single excitation cases, which means the 

coupling effect is week. Finally when the phase 

difference is 180 degrees, the elevation reaches up 
to 0.2 m, the couple effective is positive. (The 

difference between the (d) and (e) in Fig. 7 is not 

very obvious because of the different vertical  
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Fig. 7 The coupling effects of simultaneous action of surge 

and pitch motions 

(With different vertical scales) 
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scales.) So for a tank under surge excitation, if we 

can supply an artificial pitch excitation with a 

proper phase difference, the motions of the liquid in 
the tank can be significantly promoted or 

suppressed. It is supposed to be more efficient than 

supplying an artificial surge exciting because of the 
nonlinearity. 

 
5. CONCLUSION 
 

Simulation of SPH to the surge and pitch 

motions in a two dimensional rectangular tank is 
presented in this paper. The case of surge shows a  

good agreement with literature results8). When the 

exciting frequency is near the highest natural 
frequency, the simulation demonstrates the 

phenomenon of wave breaking and water particles 

splash , which is caused by the wave impacts on the 
ceiling, and the effect of the impacts to the 

numerical results is discussed. The simulation of 

coupled surge-pitch exciting illustrates the effects of 
the phase differences. The elevation is smallest 

when phase difference is 0   and largest when phase 

difference is
180 . The effect of the coupling is 

nonlinear. When phase difference is 90 , the 

coupling effect is not obvious. 

The SPH method has shown its advantage when 

applied to sloshing problems with large deformation of 

free surface. But further work is still needed to 

decrease the numerical dissipation and to improve the 

computational efficiency during long computational 

periods. In the future SPH method should be easily 

applied to many other sloshing problems such as 

sloshing in 3-D and complex geometries tanks, 

sloshing in elastic tanks and so on. 
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