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    The planimetric outlines of escarpments can be used to characterize many landforms.  The retreat 
speed of a scarp is influenced by three main processes, scarp backwasting, fluvial incision and 
groundwater sapping.  In this study, we performed a linear stability analysis of the planimetric outlines 
by considering the processes of scarp backwasting and groundwater sapping.  The retreat speed of the 
scarp due to backwasting is assumed to be a function of the scarp curvature in which convexity will 
enhance the rate of retreat, whereas the retreat speed due to groundwater sapping is a function of water 
discharge.  We found that, if the retreat speed depends on water discharge alone, no dominant channel 
spacing can be found.  With an increase of the effect of scarp curvature, dominant channel spacing 
becomes larger.  Thus, the self-organized channels can be modeled if the proper treatment of the effect 
of scarp curvature is taken into account. 
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1. INTRODUCTION 
 

Escarpment is a steep slope or long cliff that 
separates two areas of different levels.  Thus, many 
landforms can be well characterized by the 
planimetric outlines of escarpments.  There are 
various shapes of the planforms of escarpments such 
as reentrants, rounded projections and sharply 
pointed projections.  According to Howard and 
Selby1), the scarp form can be determined by the 
spatial distribution of erosion and by lithologic and 
structural influences such as rock thickness and dip.  
As escarpments are created by lateral retreat of 
scarps, Howard2) proposed three major processes of 
scarp retreat as follows: scarp backwasting, fluvial 
incision and groundwater sapping.  Scarp 
backwasting is termed as erosion of the scarp face 
by rockfall, slumping, undermining and weathering.  
Fluvial erosion creates downcutting by streams 
which originate on the top of the escarpment and 
pass over the front of the escarpment, whereas 
groundwater sapping is the process that undercuts or 
undermines a scarp induced by seepage erosion. 

In this study, we perform a linear stability 
analysis to investigate the characteristics of 

escarpment planforms.  Two major processes, 
scarp backwasting and groundwater sapping, are 
considered, and the results are compared with the 
experimental results of Pornprommin and Izumi3).  
If the planimetric outline of escarpments is unstable, 
it is assumed to trigger channelization, and a 
channel network may develop afterward. 
 
2. FORMATION 
 
(1) Groundwater Flow Equation 
   Let us consider groundwater flow in an 
unconfined aquifer with a free water surface above 
an inclined impermeable layer as shown in Figure 1.  
If the gradients of the piezometric surface are 
assumed to be sufficiently small, the pressure 
distribution can be approximated to be hydrostatic, 
and the movement of groundwater flow can be 
described by the following Dupuit-Forchheimer 
equation: 
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where ˜ denotes the dimensional variables, t~  is 
time, x~  and y~  are the streamwise and lateral 



 

 

directions respectively, h~  is water depth, K~  is 
the hydraulic conductivity, φ is porosity, and S is the 
slope of the impermeable layer. 
 
(2) Retreat speed of a scarp 
   As shown in Figure 2, the retreat speed of a 
scarp (seepage face) in the x~  direction is assumed 
to be described as follows: 
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where X~  denotes the location of the scarp which is 
a function of y~  and t~ , fE~  is the retreat speed 
due to groundwater flow which can be expressed in 
an exponential function of the water discharge at the 
scarp [Howard2)] as follows: 
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where 
Xxq ~~

~
=

, rq~  and thq~  are the unit discharge at 
the scarp, the reference unit discharge and the 
threshold unit discharge respectively, α~  is an 
empirical constant with the dimension of velocity, 
and γ is a dimensionless exponent.  The unit water 
discharge q~  is expressed as 

( ) hvuq ~~~~ 2/122 +=  (4) 
where u~  and v~  are the velocity components in 
the x~  and y~  directions respectively and assumed 
to be uniform in the vertical direction as follows: 
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The angle between the x~  direction and 
groundwater flow normal to the scarp face θ is used 
to calculate the retreat speed in the x~  direction, 
such that 

( )2~/~11cos yX ∂∂+=θ  (6) 
According to Howard2), the retreat speed of the 
scarp due to backwasting mE~  can be assumed to be 
uniform as the first approximation.  However, he 
mentioned that the mechanism will be enhanced by 
scarp convexity.  For example, in Figure 3, the 
right block with a convex planimetric outline has a 
higher possibility of backwasting than others.  
Thus, for simplicity, we assumed that it can be 
expressed by a diffusion function as follows: 
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where ε~  denotes the curvature coefficient of the 
planimetric outline of a scarp influencing the 
magnitude of the retreat speed due to backwasting. 
 
(3) Boundary conditions 
   Suppose that the sediment layer extended from 
the seepage face to far upstream.  The seepage 
flow will reduce to a constant, laterally uniform 
flow far upstream.  Thus, the boundary conditions 
far upstream can be written as 

( ) −∞→== ∞− xHhSKvu ~as~~,0,~)~,~(  (8) 
where ∞−H~  denotes the constant water depth far 
upstream.  If there is no reservoir downstream of 
the scarp, the groundwater depth at the scarp will be 
almost zero.  If the groundwater depth is zero, the 
groundwater velocity, however, becomes infinity in 
the Dupuit approximation in which it will violate 
our analysis.  As a result, non-zero value of water 
depth is necessary to be assumed at the seepage 
face.  Let us consider the constant water depth at 
the scarp (seepage face) εh~ , and, thus, the boundary 
condition at the scarp can be written as 

Xxhh ~~at~~
== ε  (9) 

 
(4) Normalization 
   The following transformations are introduced, in 
which the variables without tildes are the 
normalized version of the corresponding variables 
with tildes: 
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Fig.1 Scarp (seepage face) and groundwater flow. 

Fig.2 Retreat speed of a scarp. 

Fig.3 Effect of scarp convexity on backwasting. 
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With the use of the above normalization (10a–d), 
the governing equations (1) and (2) are rewritten as 
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where the normalized fluvial erosion due to seepage 
flow is 
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In (11), the parameter β indicates the relationship 
between subsurface flow velocity and seepage 
erosion as 

α
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In (12), the normalized curvature parameter ε is 

α
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which implies the relative magnitude of the retreat 
of a scarp by backwasting to that by seepage flow.  
In (13), ψ denotes the ratio between the threshold 
water discharge for seepage erosion and water 
discharge as follows: 
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where 0 ≤ ψ < 1. 
The boundary conditions (8) and (9) are normalized 
as 

−∞→= xh as1  (17) 
Xxhh == atε  (18) 

where 0 < hε < 1. 
 
(5) Coordinate transformation 
   Considering the base state of the problem in 
which the seepage face retreats at a constant speed, 
the variables such as water depth and velocity can 
be considered steady under the proper moving 
coordinates as follows: 

0
** , Xxxtt −==  (19a,b) 

where * denotes the moving coordinates, and X0 is 
the location of the scarp surface in the base state and 
a function of time t. 
From (19), the following relations are derived: 
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Substituting (20a,b) into (11)–(12) and reducing, we 
obtain 
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where * is dropped for simplicity, and the parameter 
f is 

t
Xf
d

d1 0

β
−=  (23) 

and dX0/dt denotes a constant retreat speed of the 
scarp in the base state. 
 
3. ONE-DIMENSIONAL BASE STATE 
 
  In the one-dimensional base state, the governing 
equation (21) is reduced to 
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and the retreat speed of the scarp (22) becomes 
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where the subscript 0 denotes the one-dimensional 
base state solution. 
Integrating (24) and using the boundary condition 
far upstream (17), we obtain 
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Again, integrating (26) and using the condition at 
the scarp face (18), we obtain the relation between x 
and h0 as follows: 
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Substituting (23) and (26) into (25), the parameter f 
can be estimated by 

( )
f

fh 11
/1 −+

−=
ψβ γ

ε  (28) 

 
4. TWO-DIMENSIONAL PERTURBATION 
  PROBLEM 
 
  We introduce the following expansions: 
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where the subscript 1 denotes the linear solution, A 
is a small amplitude, Ω is the growth rate of 
perturbation, k is the wave number of perturbation, 
X1 is a constant, and h1 is a function of x. 
  Substituting (29) into (21) and (22) and reducing, 
at O(A), we obtain 
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where ′ denotes the derivative with respect to x. 
  Equation (30) forms a second-order ordinary 
differential equation with an eigenvalue Ω which 
needs two boundary conditions in order to solve. 
  The first boundary condition can be found at far 
upstream where the perturbation should vanish. 
Thus, 

−∞→= xh as01  (32) 
At the downstream end where the scarp is located, 
the condition (18) becomes 

0at0101 ==′+ xXhh  (33) 
Eliminating X1 by substituting (33) into (31) and 
reducing, we obtain the second boundary condition 
as follows: 
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Thus, the governing equation (30) with the 
boundary conditions (32) and (34) will be solved for 
the eigenvalue Ω by using the Chebyshev 
polynomial method [Boyd4)]. 

5. RESULTS AND DISCUSSION 
 

Figure 4 shows the characteristics of the growth 
rate of perturbations Ω with varying the wave 
number k and the parameter ε indicating the 
influence of the curvature of the scarp face to the 
retreat speed by backwasting.  While k is shown in 
the logarithmic scale, Ω is shown in the linear and 
logarithmic scales in the left and right figures, 
respectively.  If ε = 0, it implies that the retreat 
speed depends on water discharge only.  It is found 
that, without the effect of scarp curvature, Ω 
increases linearly with an increase of k.  Thus, no 
characteristic channel spacing can be found for this 
extreme case.  Howard5) found this shortcoming, 
so he resolved the problem by imposing a random 
function on the hydraulic conductivity K~ .  Thus, 
the channel spacing in his model was found to 
depend on the inputs of the model grid scale and the 
random function.  In this study, if we apply 
non-zero value to the scarp curvature parameter ε, it 
is found that Ω does not change in the range of very 
small k but decreases abruptly in the ranges of 
sufficiently large k.  Thus, the dominant wave 
number kmax corresponds to the maximum growth 

Fig.4 The growth rate of perturbation Ω as a function of k and ε for β = 10, γ = 1.5 and hε = 0.4. 

In the left figure, Ω is in the linear scale. In the right figure, Ω is in the logarithmic scale. 

Fig.5 Concept of the retreat speed affected by the fluvial and mass-wasting processes. 

Solid lines are the initial perturbations, and dashed lines are the evolutions of perturbations. 



 

 

rate of perturbations Ωmax can be estimated in the 
case of non-zero value of ε.  From the figures, if ε 
= 0.001, 0.01 and 0.1, kmax are approximately 500, 
50, and 5, respectively.  Thus, the effect of 
curvature constraints the channelization with large k 
(small channel spacing), and kmax decreases with an 
increase of the scarp curvature parameter ε. 
  Figure 5 represents the conceptual diagrams of 
the effects of the fluvial and mass-wasting processes 
to the retreat of the scarp.  Small amplitude 
sinusoidal perturbations with varying wave number 
k are introduced at the scarp in the figure.  In case 
(a), the perturbation with small wave number k 
(large channel spacing) is assumed to be imposed on 
the scarp.  Due to large channel spacing, the effect 
of curvature becomes small.  Thus, the retreat of 
seepage face is dominated by the fluvial process, 
and that the rate of scarp retreat of the inward 
outline is higher than the rate of the outward outline 
because of the concentration of water discharge.  In 
contrast, the effect of curvature will be strong if the 
wave number of perturbation k is large as shown in 
case (b).  Thus, the effect of mass wasting 
dominates the retreat of the scarp.  The convex 
portion of the scarp (the outward outline of scarp) 
will be retreated with the rate higher than the 
concave portion (the inward outline).  Therefore, 
with the use of this concept, we can investigate the 
self organizing channelization. 
  The result in Figure 4 suggests that, with the 
proper treatment of the curvature parameter ε, the 
self-organized channel can be generated without 
imposing a random function, and the model can be 
independent from a grid scale.  Thus, we try to 
estimate ε using our experimental data3).  Table 1 
shows the estimation of the dominant wave number 
kmax and the curvature parameter ε corresponding to 
the results of our experiments.  A sediment layer of 

1.5m width, 1.2m length and 6-10cm thickness was 
created in a wooden chamber.  The experiments 
had been conducted with varying the slope chamber 
S as shown in the first column of the table.  The 
porosity φ of 0.3 and the hydraulic conductivity K~  
of 10cm/s were measured, and a water discharge of 
20liter/min was assumed.  Thus, water depth far 
upstream ∞−H~  can be computed by BSKQ ~~/~  as 
shown in the second column.  It is found that ∞−H~  
decreases with an increase of the chamber slope S.  
The dominant channel spacing L~  from the 
experimental result for each slope S was shown in 
the third column.  Thus, the dominant wave 
numbers kmax in the fourth column were computed 
from 

LS
H

k ~
~2
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∞−=

π  (35) 

Since kmax is normalized with ∞−H~ , it was found to 
decreases with an increase of S.  In order to 
compute the parameter β, it is necessary to estimate 
the parameter α~  representing the retreat due to the 
fluvial erosion in (3).  From the experiment, the 
initial scarp retreat speed 0

~
fE  is roughly in the 

order of unity in the cm/min scale, and increases as 
headcutting progresses further upstream.  As the 
first approximation, we assigned a constant value of 
1cm/min to 0

~
fE .  Thus, β can be estimated in the 

fifth column using (14).  We assumed the Froude 
critical water depth as the water depth at the scarp 
εh~ .  Thus, the relative water depth hε can be 

estimated in the sixth column.  As the experiments 
were conducted with the water discharge slightly 
above the erosion threshold, ψ is assumed to be 0.8.  
Therefore, ε were finally estimated by matching the 
experiment results of kmax with that from the linear 

Chamber 

Slope 

S 

Water 

Depth 

∞−H~  (cm) 

Channel 

Spacing 

L~  (cm) 

Wave 

Number 

k 

β hε ε 

0.053 4.19 150 3.33 1.90 0.041 0.10 

0.107 2.08 120 1.01 3.87 0.083 0.25 

0.161 1.38 100 0.54 5.80 0.124 0.36 

0.214 1.04 86 0.36 7.70 0.165 0.41 

0.266 0.84 75 0.26 9.57 0.205 0.43 

0.317 0.70 67 0.21 11.41 0.244 0.44 

0.367 0.61 60 0.17 13.22 0.283 0.44 

Table 1 Estimation of the dominant wave number kmax and the curvature parameter ε. 



 

 

stability analysis as shown in the last column.  We 
found that ε shows the values in the order of 0.1.  
In addition, the computation was repeated for a wide 
range of uncertain assumptions such as 0

~
fE  and 

εh~ , but it was found that ε does not change 
significantly. 
  Figure 6 shows the relation between the relative 
water depth hε to the growth rate of perturbations Ω.  
The parameter hε is the ratio of water depth at the 
scarp to water depth far upstream.  It is found that 
Ω in the range of small and moderate wave number 
k and the dominant wave number kmax increase with 
a decrease of hε.  When hε decreases, it means that 
the difference between water levels at the scarp and 
far upstream increases, and that the gradient of 
piezometric head increases.  Because of the high 
gradient, subsurface flow concentration should be 
amplified and may respond to an increase of the 
growth rate of perturbation Ω. 

  The effect of ψ which represents the ratio of the 
threshold water discharge to water discharge is 
shown in Figure 7.  It is found that the growth rate 
of perturbations Ω in the range of moderate wave 
number k and the dominant wave number kmax 
increase with a decrease of ψ.  It implies that 
channelization with small spacing may develop if 
water discharge is well above the threshold erosion.  
The result corresponds well with the result from the 
experimental study by Howard5) that, at high flow 
rates and with correspondingly more rapid erosion, 
the competition between adjacent channels becomes 
less pronounced, more main channels with smaller 
channel spacing are active. 
 
6. CONCLUSION 
  A linear stability analysis was performed to 
investigate the characteristics of escarpment 
planforms that were eroded and retreated by 
groundwater sapping and backwasting.  It was 
found that the convexity of the planimetric outline 
of escarpment is an important parameter that can 
indicate the self-organized channel spacing.  In the 
case that the fluvial process is dominant, the 
perturbations will grow, whereas, in the case that the 
backwasting process with convexity-enhanced rate 
is dominant, the perturbations may decay.  Using 
our previous experimental study, we found that the 
normalized curvature parameter ε is the order of 0.1.  
A decrease of water depth at the scarp and an 
increase of groundwater flow may induce more 
channels with smaller channel spacing. 
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Fig.6 The growth rate of perturbation Ω as a function of k 

and hε for ε = 0.1, β = 10, ψ = 0 and γ = 1.5. 

Fig.7 The growth rate of perturbation Ω as a function of k 

and ψ for ε = 0.1, β = 10, γ = 1.5 and hε = 0.4. 
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