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   Precise prediction of pore pressure change due to the construction of underground structures is very 

important to monitor and manage the groundwater flow. Most current approaches to pore pressure 

prediction involve the use of numerical models like finite element method (FEM). However, for accurate 

prediction, these techniques need a lot of effort for detail hydrogeologic investigation, which is costly in 

usual case. In this study a technique of combining FEM and feed forward neural networks (FNN) were 

developed for more precise pore pressure prediction using limited and incomplete hydrogeologic data 

obtained around the Mizunami underground research laboratory (MIU) construction site, Japan. The 

results show the successful application of the method.  
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1. I�TRODUCTIO� 

 
Monitoring of pore pressure change is an 

effective tool to properly evaluate the change of 

groundwater flow system due to any construction 

work in underground. Numerical models like finite 

element method (FEM) are the most common 

methods for analyzing pore pressure changes. 

Spatial and/or temporal variability of aquifer 

parameters, boundary conditions, and initial 

conditions can be assigned across the numerical 

model domain. While this constitutes a powerful 

modeling advantage, it also presents a challenge of 

overcoming aquifer parameter uncertainty, which 

ultimately result in model prediction errors. On the 

other hand, artificial neural network (ANN) 

developed with exhaustive pore pressure and 

construction data, can achieve excellent predictive 

accuracy at specific field locations. Exhaustive data 

implies paired input-output data that contain the 

possible future maximum and minimum data values. 

Getting such exhaustive construction data is a 

challenge for the application of ANN in such cases. 

Many studies show successful application of ANN 

models in the field of groundwater simulations. 

Daliakopoulous et al.
1)
 use feed forward neural 

network (FNN), recurrent neural network (RNN) 

and radial basis function (RBF) and trained these 

models with three different algorithms 

(Levenberg-Marquardt (LM), Gradient Descent and 

Bayesian Regularization) to forecast groundwater 

levels in Greece. They concluded that FNN trained 

with LM algorithm was the most efficient. Other 

ANN applications in the field of groundwater used 

FNN trained by error back propagation
2), 3)

. 

Gokmen et al.
3)
 compares the results of FEM and 

ANN for the analysis of flow through Jeziorsko 

Earth fill Dam in Poland and reports the adequacy 

and competitiveness of ANN against FEM for 

predicting seepage through an earth fill dam. In an 

effort to combine the relative advantages of 

numerical model and ANN, a new modeling 

approach called FEM-FNN is presented in this 

study. In this model, to create the exhaustive data 

needed for developing ANN, several patterns of 

pore pressure changes were calculated by FEM for 

a simplified hydrogeologic conceptual model by 

changing the hydrogeologic parameters. Then a 

FNN model was constructed to predict the actual 

pore pressure change using these FEM results as 

inputs. FEM-FNN modeling approach was applied 

to monitor the pore pressure change caused by the 

construction of two shafts of Mizunami 

underground research laboratory (MIU), Japan. This 

approach, beside avoiding costly hydrogeologic 

studies it creates exhaustive data for the application 

of FNN method which ultimately predicts precise 

pore pressure values. 



 

 

2. GROU�DWATER FLUCTUATIO� I� 

THE MIU SITE 

 

MIU site is located in Mizunami city, Gifu 

prefecture, Japan (see Fig. 1). A research project for 

establishing techniques for investigating the 

geological environment, and to develop applicable 

engineering techniques in deep underground
4)
 is 

now going on in MIU. Two circular 1,000 m length 

vertical shafts (6.5 m diameter Main shaft (MS) and 

4.5m diameter Ventilation shaft (VS)), are now 

under construction. The two vertical shafts have 

been excavated in fractured sedimentary rock and 

basement rock composed of fractured granite
5)
.  

The excavation has started in Feb. 2005. This 

excavation had been stopped on Oct. 27, 2005 due 

to the inflow of fluoride-rich groundwater in to the 

shafts. The concentration of the fluoride was greater 

than Japanese environmental standard. After the 

construction of water treatment facility, the 

accumulated groundwater in the shafts was pumped 

out and the excavation has started again
5)
 on Feb. 

20, 2006 (see Fig. 2). 

The surface topography around the MIU 

construction site is mountainous having relatively 

steep slopes (slope gradient 25%-35%). The ground 

surface is generally sloped from Northeast to 

Southwest. Meteorological data measured within 

MIU site show precipitation is highest during four 

months of summer (June to September) and reaches 

almost above 200mm/month and during December 

to February it is as low as 50mm/month. The 

average annual precipitation is about 1550mm
6)
. 

Six boreholes MSB-1, MSB-2, MSB-3, MSB-4, 

MIZ-1 and DH-2 (see Fig. 1) have been drilled for 

monitoring the groundwater flow during the 

excavation. Continuous monitoring of pore pressure 

heads have been performed in DH-2, MSB-1 and 

MSB-3 boreholes
7)
. There are five and twelve 

pressure sensors at different depths in MSB-1 and 

DH-2 boreholes respectively. Fig. 2 illustrates the 

observed pore pressure changes in DH-2 and 

MSB-1 boreholes together with the excavation and 

water level data in both main and ventilation shafts 

from Jan. 1, 2005 till Mar. 31, 2006. The pore 

pressure changes at 17.4m, -11.4m, -25.2m, -52.5m 

& -268.5m above mean sea level (amsl) in DH-2 

and 72.5m & 56.8m amsl in MSB-1 are displayed 
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Fig. 2 Observed pore pressure in DH-2 and MSB-1, excavation and water level in MS and VS 

 

Fig. 1 MIU site area, Shafts and boreholes location 
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in Fig. 2. The sensors in MSB-1 are located in the 

sedimentary rock and sensors in the DH-2 are 

located in granite rock.  

 

3. THE FEM -F�� MODEL 
 

(1) Model structure 

In this model as a first step, a three dimensional 

conceptual hydrogeologic model is constructed and 

boundary conditions are given. In the second step, 

groundwater flow analysis is conducted by FEM for 

the conceptual model with assuming N combination 

of hydrogeologic parameters like horizontal and 

vertical hydraulic conductivities and specific 

storage. At this step N different trends of temporal 

change of pore pressure corresponding to the N 

hydrogeologic parameters are obtained. As the third 

step FNN analysis is performed using the FEM 

results as inputs. This step will find parameters of 

the FNN model like learning rate, momentum 

factor, synaptic weights that will best fit the 

observed pore pressure data. Finally pore pressure 

change in future is predicted using the optimized 

FNN model parameters and FEM results. The 

structure of the FEM-FNN model is schematically 

illustrated in Fig. 3. 
 

(2) The FEM model 

The groundwater table around MIU site is 

shallow and the rock is almost saturated except at 

the top of the sedimentary rock
4)
. The shafts have 

been excavated in deep saturated fractured rock 

mass. Therefore three dimensional saturated 

groundwater flow model was adopted to analyze the 

pore water pressure change. A three dimensional 

FEM code, called TAGSAC, developed in 

Geosphere research institute of Saitama university 

is adopted for the analysis. The code is developed 

based on Galerkin FEM. 

The site is essentially composed of sedimentary 

and granite rocks
5), 7), 8)

. The measured pore pressure 

trends in DH-2 and MSB-1 boreholes have shown a 

drastic change around June 23, 2005 (see Fig. 2). 

Moreover the observed pore pressure trends in 

MSB-1 and DH-2 boreholes are different. These 

differences may be due to the sensor locations in 

MSB-1 borehole are in low permeable sedimentary 

rock while those in DH-2 are in higher permeable 

granite rock. Therefore, in this study, a two layer 

model as illustrated in Fig. 4 is adopted as the 

conceptual hydrogeologic model. To include the 

natural hydraulic boundaries like rivers and 

groundwater divides nearby MIU, the analyzed 

domain was extended beyond the site boundary as 

shown in Fig. 4. 

Hydraulic conductivity and specific storage 

measured for the rock of this site widely 

distributed
8), 9)

. For the reason, different 

combination of horizontal and vertical hydraulic 

conductivities and specific storage were assumed to 

form the hydrogeologic models. 

The boundary condition on the ground surface 

is set as a free seepage face and a recharge rate of 

0.28mm/day
9)
 that is an average infiltration rate 

estimated in the vicinity of Tono Mine (located 

about 5km north-west of MIU) was given. Constant 

head equal to the average water level of the Toki 

and Hiyoshi rivers is given for the nodes 

representing the rivers. For the nodes representing 

the mountain ridges, a constant head is also given. 

The constant head value on the ridge was 

determined by Eq.(1), which formulates the 

relationship between surface elevation (SE) in m 

amsl and the water level (WL) observed in 

boreholes around the study area
8)
. 
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Fig. 4 Analyzed area and conceptual hydrogeologic model 
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Fig.3 Structure of FEM-FNN model 
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Bottom boundary assumed at -500 m amsl was 

set as a no-flow boundary. Because the minimum 

excavation level in the analysis period was 29.5m 

amsl in main shaft and 11.4m amsl in ventilation 

shaft, the effect of this level of the bottom boundary 

on the groundwater flow pattern might be minimal.  

A no flow boundary may represent a groundwater 

divide or a streamline
10)
. Therefore the side of the 

entire model domain is assumed as no flow 

boundary to represent a streamline created by the 

groundwater divide along the rivers and ridges. 

Transient boundary conditions have been given 

on the shafts walls. Groundwater level in the shaft 

was equal to the bottom of the shaft during 

excavation; hence constant head equal to this level 

is given for the nodes at the bottom. During water 

level recovery in the shafts, the transient water level 

variation is given as the changing constant head 

value for the nodes at the bottom of the shafts. 

In the FEM analysis, at first, arbitrary 

combinations of vertical (KV) and horizontal (KH) 

hydraulic conductivities were given in the two layer 

hydrogeologic model. Then a steady state pore 

pressure distribution was calculated for predicting 

the initial pore pressure distribution before shafts 

construction begins. Measured pore pressures at 

certain depth of DH-2 and MSB-1 boreholes before 

shaft excavation were compared with the calculated 

values. KV and KH values of the two layers having 

better approximation were selected. By using the 

selected KV and KH values a transient FEM 

simulation was analyzed. In this transient FEM 

analysis the specific storage (Ss) value was adjusted 

to approximate the measured pore pressure trend at 

DH-2 and MSB-1 boreholes due to the shafts 

construction.  

18 different hydrogeologic models were used to 

approximate the pore pressure trends shown in Fig. 

2, of which 9 are for DH-2 and the other 9 are for 

MSB-1 pore pressure trend approximation. 3 

hydraulic parameters (KV, KH and Ss) for both 

layers, totally 6 hydraulic parameters are given for 

each hydrogeologic model. Table 1 summarizes the 

range of parameter values given for both boreholes 

pore pressure trends approximation. The top layer 

mainly represents the sedimentary rock while the 

bottom layer represents the granite basement. 

 

(3) The F�� model 

A three layer FNN model composed of an input, 

a hidden and an output layers and trained by back 

propagation algorithm have been adopted. We have 

used the 18 FEM simulation results as input to FNN 

model, therefore the total number of input nodes are 

18. There is no standard method to select the 

number of hidden layer and hidden nodes; trial and 

error methods are usually employed. After careful 

consideration one hidden layer with 7 hidden nodes 

were found to be suitable in present study for both 

boreholes pore pressure analyses. The output layer 

has only one node to represent the measured pore 

pressure. The number of nodes for input, hidden 

and output layer (including the biased nodes at 

input and hidden layer) of the finally selected FNN 

model was 19, 8 and 1 respectively. Fig. 5 

illustrates the architecture of the FNN model 

selected. The suffix b refers to the biased node. 

The pore pressure trends calculated by FEM are 

given to the nodes of input layer and send the 

respective input value to all hidden nodes. At any 

hidden layer node, information received from all 

input nodes and bias node of input layer are 

multiplied by hidden-input synaptic weights (SWs) 

and summed up. The summed up input is then acted 

upon by sigmoid logistic non-linear activation 

function. The result is then forwarded from each 

hidden node to output layer node. Similarly, 

information received from all hidden layer nodes 

Table 1 Range of parameters obtained 

 

parameter Layer min max 

KV 5.0E-11 1.0E-9 
Top 

KH 1.25E-7 3.5E-6 

KV 5.0E-6 5.0E-5 

Hydraulic 

conductivity 

(m/s) 
Bottom 

KH 1.0E-7 1.0E-6 

Top 1.5E-5 9.0E-5 Specific 

storage Bottom 1.2E-6 1.5E-5 

 

Fig. 5 Architecture of FNN model adopted 



 

 

and bias node of hidden layer are multiplied by 

output-hidden SWs and summed up and then acted 

upon by the sigmoid logistic activation function. 

Values at the output node are then compared with 

the measured pore pressure trend. Mean square 

error (MSE) is calculated at output layer, and if 

MSE is within acceptable limit the process is 

terminated otherwise feed backward pass is carried 

out for updating of SWs by using back propagation 

equation (Eq.(2)) 
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In Eq.(2) ohw is the SW value joining output 

and hidden layer nodes, subscript “o” denotes 

output layer node and “h” denotes hidden layer 

node. )(oldwoh∆ is the previous weight change 

of the respective SW ( ohw ). po is the computed 

value of output layer node. to the measured pore 

pressure value. η is the learning rate and α is the 

momentum factor.  

The SWs between input and hidden layer nodes 

are also updated in a similar manner. Appropriate 

selection of parameters of η  and α  are also 

very important for successful training of FNN 

models. After trial calculations as η and α  

values 0.001 and 0.9 were selected respectively. 

In order to avoid over fitting problem in back 

propagation algorithm it is now standard practice to 

use cross validation approach
1),11)

. In cross 

validation approach a dataset is divided into three 

portions: training, validation and test sets, the 

former is used for the training of the model, 

validation set is used to avoid over fitting and the 

test set is used to check the accuracy of trained 

model. 

The maximum range of sigmoid logistic 

function is between 0 and 1. The input data is 

therefore required to be normalized in between 

these two limits. However, the data was rescaled in 

effective range of 0.0 to 0.9 to accommodate 

occasionally occurring extreme pore pressure 

values.  

Starting values of SWs also significantly affect 

the generalization capability of FNN model. Trial 

and error method is most commonly used to select 

the starting SW vector values. After several trials 

with different combinations of starting SW vector 

values, values initialized in the range of +1.0 were 

selected for MSB-1 and +3.0 for DH-2 borehole 

pore pressure analyses. 

 

4. RESULTS A�D DISCUSSIO� 

 

While discussing the results of FEM-FNN 

model both training and validation sets are taken 

and called it as calibration phase. Three types of 

measures of the goodness of fit have been used to 

check the performance of the FEM-FNN model; 

these are coefficient of efficiency (CE), coefficient 

of determination (CD), and the root mean square 

error (RMSE). CD and CE tend to one and RMSE 

tend to zero for perfect prediction
12)
. 

For both bore holes 1 hour interval data from 

Jan.1, 2005 till Mar.31, 2006 were used. After 

neglecting some faulty measured data points 75% 

of the total data points were used for calibration and 

25% for testing of FEM-FNN model. The result of 

the model for 56.8m amsl sensor in MSB-1 and 

-52.5m amsl sensor in DH-2 are shown in Fig. 6 

and Fig. 7 respectively. In these figures the range of 

FEM results to approximate pore pressure trends at 

56.8m amsl sensor in MSB-1 and -52.5m amsl 

sensor in DH-2 with using hydraulic parameters in 

the range shown in Table 1 are also depicted.  

In calibration phase, the value of CE, CD and 
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Fig. 6 Results for 56.8m sensor in MSB-1 
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Fig. 7 Results for -52.5m sensor in DH-2 



 

 

RMSE were 0.998, 1.003 and 0.411m for DH-2 and 

0.999, 1.003 and 0.049m for MSB-1 pore pressure 

data fitting respectively. These results indicate the 

models were calibrated successfully. This calibrated 

FNN model was used to validate the pore pressure 

prediction in the test phase. The validation was 

performed by changing the test phase periods for 

the next 1 day to 114 days after the end of the 

calibration phase. The CE, CD and RMSE for 

different test phase periods can be seen in Table 2. 

It has been reported that models having CE 

values above 0.9 are very satisfactory, in between 

0.8-0.9 are fairly good and below 0.8 are 

unsatisfactory
6)
. According to this criterion the 

FEM-FNN model shows very satisfactory result for 

every test phase period shown in Table 2. The 

improvement of the proposed model results in terms 

of RMSE, CE and CD statistics with decreasing test 

period, suggest that the shorter the forecasting 

period the better the performance of the proposed 

modeling approach. 

 

5. CO�CLUSIO�S 
 

A combination of FEM and FNN model 

(FEM-FNN) was developed for the prediction of 

the pore pressure change at MIU site; Japan. The 

measures of goodness of fit obtained for different 

test periods are very satisfactory and are more 

improved with decreasing the test period length. 

This can clearly indicate the application of the 

model in pore pressure prediction. Of course, this 

model needs exhaustive measured pore pressure 

trends for optimization of the FNN parameters.  

In monitoring and management of pore pressure 

changes in fractured rock aquifers, when 

uncertainty in hydrogeologic parameters estimation 

and/or the scale of interest make the mathematical 

and conceptual modeling approaches like discrete 

fracture network or equivalent porous medium is 

difficult to apply, this combined model can be used.  

Finally, although the dynamicity of the 

groundwater flow pattern in MIU project area is 

complex due to construction of shafts, the 

FEM-FNN modeling approach have shown very 

good result. Therefore this modeling approach 

would also improve the results of numerical models 

when it is applied in case of other groundwater 

managements. 
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Table 2 CE, CD and RMSE for DH-2 and MSB-1 at 

different test phase periods 

 

Borehole DH-2 MSB-1 

Indicators 
CE 

(-) 

CD 

(-) 

RMSE 

(m) 

CE 

(-) 

CD 

(-) 

RMSE 

(m) 

1 0.999 1.05 0.068 1.000 1.01 0.017 

7 0.997 1.11 0.191 0.998 0.94 0.051 

15 0.992 1.19 0.385 0.996 0.91 0.068 

30 0.976 1.37 0.801 0.990 0.87 0.091 

60 0.973 1.41 0.874 0.978 0.84 0.113 

Test 

phase 

114 0.976 1.41 1.425 0.908 1.56 0.359 

 


	header67: Annual Journal of Hydraulic Engineering, JSCE, Vol.53, 2009, February
	NextPage67: - 67 -
	NextPage68: - 68 -
	NextPage69: - 69 -
	NextPage70: - 70 -
	NextPage71: - 71 -
	NextPage72: - 72 -


