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   This paper reports an application of a Land Data Assimilation System (LDAS) to the Wenjiang site 
located near Chengdu, China, for the period from January to March, 2008. The LDAS was first driven by 
in-situ observed micrometeorological data. Simulated energy fluxes were compared to hourly direct 
measurements and simulated soil moisture content was compared to the in-situ soil moisture observations 
at a depth of 4 cm. The results show that the LDAS well simulated those variables and thus validated the 
capability of LDAS. To check the possibility of applying LDAS globally and simulating surface energy 
and water budget worldwide, two sets of model output data were used as the driving data of the LDAS: 
the Japan Meteorology Agency (JMA) Model Output Local Time Series (MOLTS), and the Modified 
JMA MOLTS. The LDAS performance was not so good when driven by the original JMA MOLTS data, 
but improved after we used modified MOLTS data with some simple linear regression equations. This 
result demonstrated the feasibility of reliably simulating land surface fluxes with a LDAS driven by 
model outputs.  
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1. INTRODUCTION 
 

Land surface processes through which exchanges 
of water, energy and carbon between the land 
surface and the atmosphere are realized, remarkably 
affect weather and climate. Climate simulations are 
especially sensitive to the diurnal and seasonal 
cycles of the surface energy balance1). Land surface 
energy budgets are also very important in 
hydrological and ecological modeling.  The energy 
flux can be measured at a patch scale with some 
special instruments such as triaxial sonic 
anemometers, krypton hygrometers and fine-wire 
thermocouples. It also can be estimated at a regional 
scale from satellite observations when infrared 
images and ancillary data are available. Land 
surface models (LSMs) are developed to predict 
temporal and spatial patterns of land surface 

variables2,3), but the quality of the predictions are 
usually not so good because of model initialization, 
parameter and forcing errors, and inadequate model 
physics and/or resolution4,5).  

The Land Data Assimilation System (LDAS), 
developed by merging observation information 
(from ground-based stations, satellites and so on) 
into dynamic models (i.e. LSMs), is expected to 
provide high quality surface energy and water flux 
estimates with adequate coverage and resolution. In 
this study, we applied an LDAS developed at the 
University of Tokyo (LDASUT) 6) for the Wenjiang 
site of a JICA project where a PBL tower had been 
built. The objectives of this study are: (1) to 
evaluate LDASUT in a vegetated land surface using 
in-situ observations, and (2) to check the feasibility 
of estimating areal land surface energy and water 
fluxes reliably using LDASUT driven by spatially-



 
distributed forcing data.  In this study, LDASUT 
was driven by Japan Meteorology Agency (JMA) 
Model Output Local Time Series (MOLTS) data 
and simulation results were compared with direct 
measurements. 

In the following section, we briefly describe the 
materials and methods used in this study, including 
the experimental site and introduce the LDASUT. 
The simulation results of LDASUT driven by in-situ 
data are described in section 3. In section 4, the 
LDASUT was first driven by MOLTS data, and 
then by modified MOTLS data to improve the 
quality of the simulation. Finally, we finish this 
paper with some conclusions. 

 
2. MATERIALS AND METHODS  
 
2.1 Experimental site description 

The Wenjiang site is located on a flat farm field 
approximately 19 km west of Chendu city of 
Sichuan province, China. The site has an elevation 
of 530 m and is centered at 30°44'N latitude, 
103°52'E longitude. It is near the edge of Tibetan 
Plateau and in the water vapor corridor of the Asian 
monsoon. A PBL tower, established by a JICA 
project, was built in this site in Feb. 2007. 
Observations at the PBL tower include wind speed 
and direction at four levels, air temperature and 
humidity, turbulences, fluxes of energy and CO2, 
soil moisture and temperature profiles, soil heat 
flux, solar and atmospheric radiation, and 
precipitation. 

 
2.2 LDASUT 

In this study, the land surface energy and water 
budget was simulated using the LDASUT6). This 
system consists of a LSM to calculate surface fluxes 
and soil moisture, a radiative transfer model (RTM) 
to estimate microwave brightness temperature, and 
an optimization scheme to search for optimal values 
of soil moisture through minimizing the difference 
between modeled and observed brightness 
temperature. 

The LSM is a Simple Biosphere model (SiB2)2). 
The RTM used in the LDASUT has two 
components: volume scattering and surface 
scattering parts7). The volume scattering part 
simulates the radiative transfer process inside the 
soil layer by a 4-stream based RTM in which the 
multiply scattering effects of a dry soil medium is 
calculated by the dense media radiative transfer 
model (DMRT)8). The surface scattering part 
simulates the surface scattering effects at the land-
atmosphere interface by the Advanced Integral 
Equation Method (AIEM)9). The minimization 
scheme is a shuffled complex evolution method. 

The initial parameters of LDASUT are obtained 
from a global data set; for example, the leaf area 

index (LAI) from Moderate Resolution Imaging 
Spectroradiometer (MODIS) data; and the soil and 
vegetation parameters from The International 
Satellite Land Surface Climatology Project 
(ISLSCP). The satellite observation data is from the 
Advanced Microwave Scanning Radiometer for the 
Earth Observing System (AMSR-E) brightness 
temperature data. The meteorological driving data 
of the LDASUT can be either weather model 
outputs or in-situ observation. 

 
2.3 Statistical analysis of the simulation results 

The simulation results (Mi) of the LDASUT are 
compared against the in-situ field measurements 
(Oi), on the basis of three statistical analyses:  
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where n is the total hourly observation points; MBE 
is the mean bias error; RMSE is the Root Mean 
Square Error; and NSEE is the Normalized Standard 
Error of the Estimation, denoting an estimation of 
relative uncertainty.  
 
3. SIMULATION DRIVEN BY IN-SITU 

DATA 
 
As the first step in this study , we performed 

season long runs from Jan. to Mar. 2008 (90 days) 
with PBL observation as the forcing data of the 
LDASUT. Agriculture/C3 grassland in the standard 
SiB2 parameters for vegetation was used for the 
simulation. The default soil parameters (texture, 
thermal and hydraulic properties) were derived from 
the ISLSCP Initiative II soil data. This simulation is 
called “PBL”. 

To avoid anomalous results, data are rejected 
when (i) latent heat flux was less than -20 W/m2 or 
(ii) the residual energy was less than -100 W/m2. 
After data filtering, we retained 1990 data sets from 
the original 2160 data sets. 

 
3.1 Surface Energy Budget 

Figure 1 shows the monthly mean diurnal changes 
of net radiation (hereinafter referred to as Rn), latent 
heat flux (lE), sensible heat flux (Hs), and soil heat 
flux (G), from the top to the bottom row, 
respectively. The open cycle represents the direct 
measurements and the solid line represents the 
results of ‘PBL’. 

From figure 1a, it is clear that ‘PBL’ simulated 
Rn with high accuracy for both the peak and diurnal 
patterns. This was because in-situ observed 
downward radiation was used as forcing data and 



 

SiB2 calculates Rn from the four components of 
radiation budgets. As shown in figure 1 b-d, it is 
obvious that ‘PBL’ captured the temporal variation 
characteristics of lE, Hs and G. 

 Figure 2 shows scatterplots of simulated Rn, G, lE, 
and Hs, against direct measurements. The squared 
correlation coefficients are 0.99, 0.80, 0.89 and 
0.85.  

As shown in table 1, ‘PBL’ slightly overestimated 
G and underestimated lE, while it well estimated 
Rn. The overestimation of G may be to the result of 
measurement errors of soil heat flux and the 
underestimation of energy storage in the upper soil 
layer above the heat flux plate where the 
heterogeneity increased as crop roots developed. 
The discrepancies in lE may be partly to the result 
of instrument errors. According to Mauder et al.10), 
the accuracy of sensible heat flux measurement is 

around 10-30 W/m2, and 20-40 W/m2 for latent heat 
flux. Moreover, considering the fact that ‘PBL’ 
simulation and in-situ observation have different 
scales, and the fact that the residual energy (Re) of 
direct measurement (Re=Rn-lE-Hs-G, shown in 
table 2) is comparable to the largest RMSE of 
energy components, the quality of surface energy 
budget simulation of ‘PBL’ is acceptable. The 
capability of LDASUT to simulate land surface 
fluxes reliably is then validated.  

 
3.2 Surface temperature and upward long-wave 

radiation 
Temperature is a very important prognostic state 

variable on the land surface. LDASUT is able to 
provide vegetation, ground surface and deep soil 
temperatures. Unfortunately, the infrared 
thermometer used at the Wenjiang site was broken 
during the study period and so we do not have direct 
ground surface temperature measurements. 
According to the Stefan-Boltzmann law, upward 
long-wave radiation (ULR) is a good surrogate of 
land surface temperature. We therefore compared 
the simulated ULR with the direct measurements. 

 
Figure 3 shows a comparison of hourly ULR. It is 

apparent that ‘PBL’ generated consistent temporal 
variations of ULR. The squared correlation 
coefficient was 0.88; MBE -4.1 W/m2; RMSE 11.8 
W/m2 and NSEE 3%.  

  
3.3 Soil Water Content 

Figure 4 shows a time series of the volumetric soil 
moisture content observed at 4 cm depth (thin line) 
and those generated by ‘PBL’ (thick line). In-situ 
observed precipitation is also plotted. We found that 
the observed soil moisture did not change much 

Table. 2 Three months averaged energy components  
(unit: W/m2)  

 Rn lE Hs G Re

Measurements 91  55 23 -6  19

PBL 89  44 30 16  0
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Fig. 3 Comparison of hourly long-wave radiation of ‘PBL’ 
against direct measurements.  
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Fig. 1 Comparison of monthly mean diurnal change of (a) Rn, 
(b) lE, (c) Hs and (d) G of ‘PBL’ against direct measurement. 

Table. 1 Statistic analysis of energy components of ‘PBL’  

 MBE RMSE NSEE

Rn (W/m2) -1.3  12.5  9%

lE (W/m2) -5.9  19.6  32%

Hs (W/m2) 2.8  14.3  41%

G (W/m2) 11.0  22.9  65%
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Fig. 2 Scatterplots of Rn, lE, Hs and G of ‘PBL’ against direct 

measurements. 



 
during this period, ranging from 0.23 to 0.33. ‘PBL’ 
predicted the moisture peak in good agreement with 
direct measurements, for both the occurring time 
and values. The gaps between ‘PBL’ soil moisture 
and observed ones get larger in the drying 
processes. This is partly due because in-situ soil 
moisture is measured at a depth of 4 cm, which is 
generally deeper than the penetration depth of 
AMSR-E. The scale difference of the AMSR-E 
observations and in-situ ones also contribute to such 
discrepancies. Generally and statistically, ‘PBL’ 
estimated soil moisture with high quality, 
considering that MBE is -0.02; RMSE is 0.02 and 
NSEE is 9%. 

 
 

4. SIMULATION DRIVEN BY MODEL 
OUTPUT 

 
From an analysis of the ‘PBL’ simulation in 

section 3, it is clear that LDASUT can correctly 
simulate the surface energy and water budget when 
it is driven by in-situ observed forcing data. In 
climate studies and numerical weather predictions, 
the spatial distribution information of energy and 
water fluxes is very essential. To simulate land 
surface fluxes at a regional or global scale, spatially-
distributed meteorological forcing data are needed. 
Such forcing data were only available from model 
outputs, and, as mentioned in section 1, JMA 
MOLTS data was selected in this study. Same as the 
“PBL” simulation, a simulation was conducted by 
using the original MOLTS as meteorological forcing 
data and is called “M_O”. 
 
4.1 Surface Energy Budget of ‘M_O’ 

Table 3 shows the statistical results of the energy 
fluxes of ‘M_O’. It is clear that the quality of 
‘M_O’ is much worse than that of ‘PBL’. The MBE 
of Rn is larger than 5 W/m2, which is the accuracy 

of solar radiation measurement. The NSEE of Hs 
and G are larger than 100%. Therefore, the quality 
of ‘M_O’ is not acceptable and we can not directly 
apply MOLTS data as forcing data for LDASUT. 

 
4.2 Modification to MOLTS data  

To ascertain the reason why ‘M_O’ performance 
is not so good, we compared MOLTS forcing data 
with in-situ observations.  

From an analysis of monthly mean diurnal 
radiation (see Fig. 5a), it is clear that the peak of the 
downward short wave radiation of MOLTS was 
much bigger than that of in-situ observations,  
while the downward long-wave radiation of 
MOLTS was around 20W/m2 smaller than that of 
PBL observations(Fig. 5b).  

The pressure of MOLTS was slightly larger 
(mean 959.7 hPa) than that of PBL observation 
(mean 956.9hPa). The mean air temperature of 
MOLTS was 280.8K, almost the same as that of 
PBL observation, 280.5K. 

There are some obvious differences between 
MOTLS precipitation data and PBL observation 
(see Fig. 6). MOLTS gave a larger precipitation than 
PBL observation. The accumulated precipitation of 
MOLTS in this period was 130.3 mm, while that of 
PBL observation was just 56.0 mm. Fortunately,  
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and in-situ observation 
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Fig. 4 Comparing simulated soil moisture content with direct 
measurements 

Table. 3 Statistic analysis of radiation components of ‘M_O’  

 MBE RMSE NSEE 

Rn (W/m2) 14.1 75.5  56% 

lE (W/m2) 7.4 32.6  53% 

Hs (W/m2) 2.1 35.4  101% 

G (W/m2) 13.9 41.6  118% 



 
as demonstrated by Yang et al.6), LDASUT is able 
to partly overcome such biases in input precipitation 
data, because it directly assimilates AMSR-E 
brightness data to correct the soil moisture states.   

Through a comparison of MOLTS forcing data 
and in-situ observed data, it was clear that the large 
overestimation in MOLTS downward radiation is 
the main reason that ‘M_O’ failed to correctly 
simulate the land surface energy budget. To mitigate 
such an obvious overestimation, we modified the 
JMA MOLTS downward shortwave radiation data 
by using linear equations acquired from the 
regression analysis of the monthly mean diurnal 
cycle data.  Analogously, the MOLTS downward 
long-wave radiation data was modified using a 
linear regression equation of all three month data. 
The correction equations are as follows: 

]6435.1/)21.15_(,0max[_ −= ORSWCRSW (4) 
9557.0/)877.25_(_ += ORLWCRLW    (5) 

where RSW is the downward short wave radiation, 
RLW is the downward long-wave radiation, _C 
means the modified value, and _O means the 
original value. 

After applying equations 4 and 5 to all downward 
radiation MOLTS data, a new data set, modified 
MOLTS, was created. Analogously, the simulation 
driven by the modified MOLTS data is called 
“M_C. 

 
4.3 Results of ‘M_O’ and ‘M_C’ 

As shown in table 4, comparing table 3, it is clear 
that ‘M_C’ estimates surface energy fluxes better 
than ‘M_O’; as all items in table 4 are smaller than 
those in table 3. This means that the performance of 
LDASUT is improved using the modified MOLTS 
instead of the original MOLTS.  

Figure 7 shows the monthly mean diurnal changes 
of the surface energy components. Comparing 
‘M_O’ (dash line) and ‘M_C’ (solid line) against the 
direct measurements (open cycles), it is clear that 
‘M_C’ generally produced better results than 
‘M_O’. This means the performance of the energy 
budget simulation can be improved through a simple 
linear modification. With considering measurement 
accuracy and scale problems, the quality of “M_C” 
is reasonable for the big domain simulations. 

Figure 8 shows a comparison of the monthly 

mean diurnal changes of ULR. It is clear that ‘M_O’ 
underestimated ULR at night time, with a MBE of -
7.2 W/m2; while ‘M_C’ estimated ULR with better 
accuracy, with a MBE of -4.4 W/m2.  

Figure 9 shows a time series of the hourly soil 
moisture of ‘M_O’ (dash line), ‘M_C’ (thick line) 
and in-situ observation (thin line). The results of 
‘M_O’ and ‘M_C’ are acceptable, because the 
strength of LDASUT, which optimized soil 
parameters and assimilating soil moisture. But 
sometimes ‘M_O’ and ‘M_C’ did not follow the 

Table. 4 Statistical analysis of radiation components of ‘M_C’ 

 MBE RMSE NSEE 

Rn (W/m2) -2.4 61.5  46% 

lE (W/m2) 2.5 31.0  50% 

Hs (W/m2) -9.9 26.2  75% 

G (W/m2) 13.6 30.4  86% 
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Fig. 7 Comparison of monthly mean diurnal change of (a) Rn, 

(b) lE, (c) Hs and (d) G of ‘M_O’ and ‘M_C’ against direct 
measurement.  
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tendency of the direct measurements. This is partly 
to the result of the big difference between MOLTS 
precipitation and the observed one, as shown in 
figure 6. Statistically, ‘M_O’ estimates soil moisture 
with a MBE of 0.02, a RMSE of 0.02 and NSEE of 
8%, while those of ‘M_C’ are -0.01, 0.02 and 7%, 
respectively.   

By comparing M_O and M_C results with in-situ 
measurements, the advantages of modified MOLTS 
were verified. Thus the possibility of generating 
reliable spatial distribution of land surface fluxes 
with LDASUT driven by modified MOLTS data can 
be confirmed. 
 
5. CONCLUSIONS 
 

LDAS is expected to provide accurate temporal 
and spatial continuous land surface variables that 
will promote research in fields such as climate 
change, weather forecasting, and hydrological 
modeling. In this study, the LDASUT was firstly 
driven by in-situ observation data to validate its 
capability to estimate land surface fluxes (PBL). 
Then, to check the feasibility to estimate the spatial 
pattern of land surface fluxes with using LDASUT 
and model output forcing data, LDASUT was driven 
by two model output data sets: the original MOLTS 
(M_O) and a modified MOLTS (M_C). Simulation 
results of Rn, lE, Hs, G, ULR and soil moisture 
content were compared against the direct 
measurements.  

Our results show that the simulation results of 
‘PBL’ generally well agreed with the direct 
measurement, and the differences between in-situ 
observation and simulation are generally smaller 
than instrumental observation errors. Therefore, we 
validated that LDASUT can reliably simulate land 
surface fluxes. 

The discrepancies between the simulated fluxes of 
‘M_O’ and the direct measurements are appreciable; 
while ‘M_C’, a simple modification from ‘M_O’  
using linear regression equations, estimated those 
fluxes with improved accuracy. Because of the 
unique feature of the LDASUT to optimize soil 
parameters and then assimilate soil moisture, the 
simulated soil moisture of ‘M_O’ and ‘M_C’ were 
good quality. From these encouraging results, it is 
possible to reliably estimate land surface variables 
using the LDAS driven by model outputs. It is 
especially important for running the GCM and for 
studies in remote areas where in-situ 
micrometeorological observation is not available.  

We also found that the quality of the lE and G 
simulations was not as good as that of Rn. This 
could be the result of instrumental errors, different 
scales of the LDASUT and in-situ observation, the 
heterogeneity problem in the calculation of energy 
storage, and the model deficiencies in the structure 

and parameters. Further efforts are needed in both 
experimental and model research.   
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