非ダルシー型抵抗則を用いた捨石水制内部流れ および3次元LESによる水制周辺流れの数値計算 NUMERICAL CALCULATION OF FLOWS BY A RUBBLE MOUND GROIN BY A COMBINED MODEL OF A POROUS FLOW MODEL WITH A NON-DARCIAN RESISTANCE LAW AND A 3-DIMENSIONAL LES MODEL

赤堀良介¹・道奥康治² Ryosuke AKAHORI and Kohji MICHIOKU

¹正会員 Ph.D. 東京工業大学大学院助教 理工学研究科 (〒152-8552 東京都目黒区大岡山2-12-1) ²フェロー会員 工博 神戸大学大学院教授 工学研究科 (〒657-8501 神戸市灘区六甲台町1-1)

This study present a combined numerical model of a porous flow model that employ a non-Darcian resistance law and a 3-dimensional Large Eddy Simulation model in order to investigate 3-dimensional and temporal structures of flows around a rubble mound groin. A model's accuracy is cross-checked by comparing numerical results to observed results of an existing experiment, and model's results show good agreement in terms of time- and depth-averaged sense. Calculation results also imply that a permeable groin restricts growth of secondary flows in a constriction section. However, a combined model is not able to produce unsteady characteristics of flows that are caused by small scale and structured turbulences in a down-stream region of a groin.

Key Words : open channel, porous media, non-Darcian, rubble mound groin, LES

1. はじめに

近年の自然環境への意識の高まりや平成9年に改正さ れた河川法などを背景として、これまでのように経済性 を優先したコンクリートや鋼製の不透過性の素材を用い た構造物によるものでなく、自然石等を用いた透過性の 構造物による河川整備が全国でさかんに進められるよう になってきている. このような構造物のひとつとして自 然石を積み上げた堰(捨石堰)が挙げられ、わが国にお いても近代以前の時代から農業取水堰として利用されて きた歴史を持つ. これら捨石堰は、その素材の透過性や 形状的、構造的な特性によって、堰下流の水質の改善や 景観の点など環境面で利点を持つ一方、コンクリート製 などの堰と比較して脆弱であり、その整備に当たっては 適切な設計,施工,および維持管理が必要とされる.近 代以前においてこれらは経験的に対処されてきたが、現 代においては水理学的根拠に基づく判断が必要であり, 捨石堰の工学的特性の解析が、今後の多自然工法の普及 のためにも必須であると考えられる.

捨石堰および捨石水制の水理特性の解明に当たって, これまで,前野らは実験により捨石堰の破壊時の段階的 な特性を明らかにしたほか¹, VOF法を用いた鉛直2次元 断面での堰周辺部の流れの数値解析を行い,水面形分布 などの良好な再現に成功している². また,道奥らは水 理実験と理論解析から流量や捨石による多孔体内部の抵 抗則等,水理諸量の検討を行い³,そこで得られた知見 から,水深平均の2層モデルによる透過性構造物周辺の 開水路部と透過水制内部の流れを同時に計算可能な数値 計算モデルを提案し,捨石水制周辺の流れに関して,水 深平均,時間平均された結果に関して良好な再現性を提 示することに成功している⁴.

数値計算による捨石堰および水制の解析は、水理実験 では得難い構造物内部の流れや周辺でのせん断応力の分 布といった情報を提供することが可能であり、対象周辺 の河床変動や構造物自体に対する応力特性を詳細に検討 する際に有効であると考えられる.しかしながら、上記 に示した既往の研究では鉛直方向もしくは水深平均の2 次元的かつ定常的な流れの把握に留まっており、堰や水 制のもたらす3次元的、非定常な流れの把握は研究対象 とはしていない. Akahori⁵はLESによる3次元非定常数値 計算によって、水制先端から下流に生じる鉛直方向のせ ん断面のみでなく、水制によって急縮される部分に生じ る流下方向に軸を持つ2次流の存在が、浮遊砂輸送に大 きく関わる剥離渦の間欠的な生成に影響を与えることを 示唆した.最終的に構造物周辺の土砂輸送等の合理的検 討を目標とするに当たっては,透過型構造物周辺での非 定常3次元解析が有効であると考えられる.

これまで、不透過型の水理構造物周辺の流れに対して は3次元モデルの応用が進んでおり、長田ら⁶はRANS系 乱流モデルと移動境界座標を水制周辺の流れに適用し、 非定常流れと河床変動の数値解析に成功している.しか しながら構造物が透過性を持つ場合に関しては、それが もたらす乱れの特性等、不明な点が多く、未だ確立され たモデル構築手法は示されていない.

そこで本研究では、透過性構造物への非定常3次元モ デルを用いた解析に際する基礎的研究として、道奥ら⁴ により提案された非ダルシー型の抵抗則による多孔体内 部流れの数値モデルを、3次元LESモデルによる開水路 流の数値計算に結合することにより、捨石水制周辺およ び内部流れを同時に計算する手法を提案し、その有効性 の検討を行うこととする.

2. 数値計算モデル

道奥ら⁴による多孔体内の非ダルシー型抵抗則は時間 平均された流れに対して有効性を持つことが目的とされ ており、非定常計算での妥当性は未知である.しかしな がら本研究では、水制内部の流れにおいて平均流の値が 妥当性を持ち、十分大きいスケールでの構造を持つ場合、 それに影響される開水路部分での非定常性に関しては LESモデルによっての解像が可能であると仮定し、前述 のようなモデルの構成を提案している.流れの非定常性 に関する興味が開水路部分にある場合は、このようなモ デル化によっても現象の検討が可能であるとの仮定の下、 具体的には以下のようなモデル化を行う.

(1) 開水路部分でのLESモデル

開水路部分の流れには、SmagorinskyモデルをSGS応力 モデルとしたLESモデルを用いる⁷. 空間的に粗視化さ れた基礎式は以下の連続式(1)およびNavier-Stokes方程式 (2)となる.

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial \overline{u_i}}{\partial t} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} - \frac{\partial \left(\overline{u_i} \ \overline{u_j}\right)}{\partial x_j} + \frac{\partial}{\partial x_j} \left(2v_e \overline{S_{ij}}\right) + g_i (2a)$$

$$v_e = v + v_t \tag{2b}$$

$$\nu_{t} = \left(C_{s}\Delta\right)^{2} \left(2\overline{S_{ij}}\overline{S_{ij}}\right)^{\frac{1}{2}}$$
(2*c*)

$$\overline{S_{ij}} = \frac{1}{2} \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right)$$
(2*d*)

ここで文字上の横線は空間的に粗視化された値,下付き 文字*i*は座標系の各成分を示し,*u*; 流速,*x*; 空間座標, *t*:時間, ρ :流体の密度,*g*; 外力の加速度,*v*:動粘性 係数,*C*; Smagorinky定数, $\Delta = (\Delta x_1 \Delta x_2 \Delta x_3)^{1/3}, \Delta x_i$:格 子スケール, *P=p+2/3q*, *p*: 圧力,*q*: SGS運動エネルギー である.

実際の計算上ではこれら基礎式は細田ら⁸と同様の移 動境界適合座標上に座標変換され,式(3)の運動学的条件 により計算された水位に応じて水面での境界が時間的に 変動する.

$$\frac{\partial H}{\partial t} + u \frac{\partial H}{\partial x} + v \frac{\partial H}{\partial y} = w$$
(3)

ここで, *H*: 水位, *u*, *v*: 流速の水平方向成分, *w*: 流速の鉛直方向成分, *x*, *y*: 座標系の鉛直方向軸である.

(2) 非ダルシー型抵抗則を用いた多孔体内のモデル

Ward⁹⁾の示した非ダルシー型抵抗則を用いて道奥ら⁴⁾ により提案されたRANS型水深平均2次元モデルを,3次 元に拡張することにより,多孔体内の流れの基礎式(4)を 得る.

$$\frac{1}{n}\frac{\partial U_{si}}{\partial t} = -\frac{1}{\rho}\frac{\partial p}{\partial x_{i}} - \frac{1}{n^{2}}U_{si}\frac{\partial U_{sj}}{\partial x_{j}} + \frac{1}{n^{2}}\frac{\partial}{\partial x_{j}}\left(-\overline{u_{si}'u_{sj}'}\right) - \left(\frac{v}{K} + \frac{c}{\sqrt{K}}\sqrt{U_{sj}U_{sj}}\right)U_{si} \quad (4)$$

ここで下付き文字のsは見かけの流速を表し,間隙率nを 用いて, u_{si}=nu_iと表せる.大文字Uは流速のアンサンブ ル平均を示し, u_i=U_i+u_i'と表せ,LESにおける空間フィ ルタリングと明示的に区別するためにこのような表現を 用いた.ただしu_i'はU_iからの変動成分であり,さらに式 (4)中の右辺第3項における括弧内はレイノルズ応力を示 す.右辺第4項は多孔体内の流水抵抗力を示し,特に括 弧内第1項はDarcy則に相当する層流抵抗力,第2項は乱 流抵抗力である.道奥ら⁴によると多孔体内では右辺第4 項による抵抗が卓越することから,計算中ではレイノル ズ応力の影響を無視している.ここで,Kおよびcは多孔 体の特性パラメータであり,以下のように与えられる.

$$\sqrt{K} = e d_m, \quad c = f \left(\frac{d_m}{\sqrt{K/n}}\right)^{-3/2} \tag{5}$$

ここで, *d_m*: 平均粒径, *e*, *f*: 無次元の形状係数である. なお多孔体内での連続式に関しては, 見かけの流速に 対して式(1)を適用する.

(3) 計算手順

開水路部では、移流項計算にCIP法¹⁰を用いることから、分離解法を用いて、圧力項、粘性項、移流項と段階的な計算を行っている。圧力項に関してはSMAC法を用

いることで連続式との連立を行い、さらに式(3)により得られた水位を代入して繰り返し計算を行うことで、水位、 圧力の次ステップの収束値を求める.粘性項の計算に関しては、透過型水制以外の固体壁に対して壁法則を用いる.

多孔体内部の流れに対しても移流項にCIP法を用いる ことから、同様に分離解法を適用している.ただし水位 計算に際して運動学的条件の適用性が不明であるため、 透過性構造物内部では式(3)を用いずに、流速フラックス の水深方向積分値から連続性を満たすよう水位を求めて いる.またその際に多孔体内部での水位の時間的変動が 開水路ほど激しくないと考えられることから、圧力項と の繰り返し計算による連立を行わず、各計算ステップの 最後に4段のRunge-Kutta法を利用して求めている.

変数はスタッガード格子状に配置され、流速の各成分 はセル境界に位置する。開水路部と透過水制の境界はセ ル境界上にあるが、流速フラックスが等しいという条件 を境界条件として与え、圧力項と連続式との連立による Poisson方程式を解いている。また通常の固体壁では壁法 則を用いてせん断力の影響を考慮するが、透水性構造物 壁面では道奥ら⁴に倣い、境界に並行する水制内部での 見かけ流速と開水路部での実流速を、境界で法線方向に 微分したものを粘性項での2階微分に取り込むことで、 その考慮を行う。

3. 計算条件

本研究では、道奥ら⁴による非越流型透過水制の水 理実験(case3)の値を参考に計算条件を定める.計算 領域の形状を図-1に示す.水路長:15.0(m),水路幅: 2.0(m),水制長:1.0(m),水制幅:0.3(m),上流端から水制 上流側面までの距離:4.0(m)としている.計算での水理条 件は、流量:0.0519(m³/s),水路勾配:1/800,上流端水深: 0.096(m),下流端水深:0.037(m),上流端代表流速U₀: 0.283(m/s)とし、また捨石を構成する礫の条件を、粒径 d_m:0.035(m),間隙率n:0.38としている.

計算に用いる各係数としては, Smagorinsky定数: *C*₅=0.1, 透過水制材料の形状係数: *e*=0.015, *f*=30.0とする.

また計算時の格子数を,流下×横断×鉛直方向にそれぞれ,300×20×20とし,計算時間きざみを0.001(s),計算 ステップの総数を300000ステップとしている.さらに流 入端では流速分布と水位を,流出端では水位のみを条件 として与え,自由流出条件としている.

4. 計算結果と既存の研究との比較

まず,時間平均された結果について既存の実験値との 比較を行い,定常状態でのモデルの妥当性を検証する. 図-2は,水位の比較,図-3では水深平均流速の比較,さ らに図-4は水制下流端からx/h₀÷4.0での基準化された流 下方向流速の横断方向分布の比較を示す.

これらの水深平均された結果において、モデルの良好 な再現性が確認できる.しかしながら図-4においては、

図-2 基準化された水位の比較(上が実験値,下が計算値)

モデルによる計算結果が実験値のピークを十分捉えられ ておらず,流速分布を平均化する方向に現れていること が確認できる.

5. 計算結果の詳細な検討とモデルの問題点

前章での比較から平均化された流れの特性に関して本 モデルが良好な再現性を有していることが確認できた. この結果より、本モデルが妥当性を有していると考え、 流れの3次元性および非定常性に関しての考察を進める.

流れの3次元性に関しては、渦のもたらす組織構造の 把握が重要となる.一般的には、渦度の等値面を描画す ることでその定性的な把握を行うが、渦度の算定にあ たって、その基準となる軸が固定されてしまうために3 次元的な構造を把握することが困難となる点や、平均流 によるせん断が卓越する場合に内部での瞬間的な渦の構 造を発見するのが困難である点など、本研究への適用性 には限界がある. そのため、ここではλ2法による瞬間的 な等値面を描画することで、流域内部の渦の組織的構造 を探ることとする. λ₂法はJeongら¹¹⁾により提案された手 法であり、渦による回転運動の中心では圧力は流体の遠 心力とつりあう必要が無いために極小をとるという特性 を利用する方法の一つで、 $S^2+\Omega^2$ テンソルの固有値のう ち2番目に大きい値が負となる地点を渦の中心部である と考える. λ。法により示されたチューブ状の形状を持つ 等値面によって、回転運動の軸が模式的に示されると考 えられる. 図-5は瞬間的なん= -0.05の等値面および流速 の横断方向成分を示す. ここでは、第一に水制直前から チャンネル急縮部に掛けて生じる流体のもぐりこみによ り生じる渦(渦A), 第二に水制右岸下流側にせん断に よって生じる鉛直の渦(渦B),第三に右岸下流域に生 じる壁面からの剥離に伴う渦(渦C)およびそこから連 なる水平方向の渦が確認できる.

また横断方向流速成分から確認できる点として,水制 の直下流の域において,横断方向の流速成分がほとんど 確認できない点が挙げられる.もぐりこみから水制側面 の底面近傍を右岸側に進み2次流の生成につながるはず の流速に関しても,その収束は比較的早く(領域a), 流れの中で流下方向を軸とした回転はそれほど強く見ら れない.

これに関連して、計算結果内では定常時に確認できる 間欠的な剥離渦は第三のタイプの下流側のみであり、大 きなせん断面を持つと予想される水制先端から下流にか けての地点では第二の渦(渦B)から放出されれる水平 の剥離渦が生じていない.この構造は定常に達してから ほぼそのままの形を保って推移し、大きな構造の乱れを ほとんど生成しない.

この計算結果における透過水制周りの流れの特徴は、 同様の水理条件で行われた不透過型水制に対しての数値 計算結果と比較するとより明らかになる.図-6は不透過 水制周辺の瞬間的な λ_2 = -0.05の等値面および流速の横断 方向成分を示す.不透過水制の場合には λ_2 法により示さ れる渦の構造は透過水制の場合と比較してはるかに複雑 であり、渦B周辺からの間欠的な剥離渦の放出が確認で きる.また透過水制の結果と大きく異なり、領域aでの 反時計回り(上流から見て)となる2次流が、不透過型 水制の場合は、明瞭に存在し、より下流まで到達する.

図-4 x/h0 ÷ 4.0での水深平均流速の横断方向分布

図−5 λ₂= -0.05での等値面と横断方向流速成分(透過水制)

図-6 λ₂= -0.05での等値面と横断方向流速成分(不透過)

さらに水制下流で領域aの2次流に対し、逆方向に領域b で時計回りに生じる2次流も、透過型水制の場合よりも 明瞭に現れる.水制先端から下流にかけて、2次流が明 瞭にあらわれる不透過水制周辺の流れにおいては剥離渦 の放出が確認でき、2次流の弱い透過水制周辺では確認 が難しいという結果から、水路幅スケールでの平均流か ら受ける渦構造への影響が、捨石等を用いた透過水制と、 コンクリート等を用いた不透過型の水制とでは異なると いうことが考えられる.すなわち、水制下流での水質浄 化や、形状的な特性から得られる景観上や生態系に対す る透過水制の利点以外にも、水制上流端でのもぐりこみ による圧力勾配を緩和し、狭窄部での2次流と水制背後 の死水域での逆方向2次流を抑制し、それによって生じ る剥離渦等の大規模な流れの不安定性を抑制する効果を、 透過水制により期待できる.

しかしながら、上記の結果はあくまで平均流の大規模 な構造から推測できる差異に基づいており、透過水制周 辺ですべてのタイプの乱れが抑制されるということを証 明するものではない、実験時¹²⁾の状況(文献中のPhoto 6-7)では、水制下流域にはっきりとした水面波紋が確 認でき、モデルで再現されなかった別の種類の乱れが存 在することを示している.

このような乱れの発生源としては、多孔体内部や周辺 部で生成される小規模の乱れの影響が考えられる.本研 究では多孔体内部のモデル化において、乱流による抵抗 は時間平均された流れからの考察に基づいて与えられて おり、水制内部の瞬間的な乱れを再現できないことは予 想されたが、問題は、このような小規模乱れが、LES モデルで再現される流れの非定常性にも大きく影響する 点にある.

小規模乱れを考慮するために、透過水制近傍で等方乱 れが発生していると仮定し、正規乱数に基づく乱流生成 によってモデル化を試みた.正規乱れは透過水制の下流 側と先端側面のそれぞれの第一近傍点における法線方向 の流速成分に対して与え、正規乱数の分散の値は、浅水 流での格子乱流をモデル化したUijttewaalら¹³⁾の実験によ り示された、対数グラフ上において-1.3の傾きを持つ乱 流強度の減衰則に基づいて式(6)により与えた.

$$\ln(\frac{u^{2}}{Uc^{2}}) = -1.3\ln(\frac{x}{D}) + b$$
 (6)

ここで, *U_c*: 多孔体内の実流速, *x*: 多孔体壁面からの 距離, *D*: 多孔体を構成する粒子の直径, *b*: グラフ切片 であり, *b*=-0.38を与えている.

この人工的な乱れの効果を検討するため、式(6)による 乱れを付加した計算の透過水制周辺の乱流強度を図示し、 乱れを付加しない場合と比較を行う.図-7は流速の流下 方向成分に関して乱れ強度の等値面を表したもので、 図-7aが透過水制に正規乱れを付加しない場合、図-7bが 正規乱れを付加した場合である.これらの比較では、乱 れの人工的付加が、乱れ分布のパターンを保ちつつ、そ の強度のみを上げていることが分かる.しかしながら, この付加的乱れも、必要とされる乱れの生成について十 分でないことが、図-8の不透過水制の場合の乱れ強度と の比較から明らかである(図-8では図-7と比較して描画 される乱れの域を100倍に広げている).

図-7a 流下方向乱流強度の等値面 透過水制, 捨石水制近傍点での式(6)による乱れ付加なし. 0.0(m²/s²)≦*u*'*u*'≦5.0*10⁵(m²/s²)について描画.

図-7b 流下方向乱流強度の等値面 透過水制, 捨石水制近傍点での式(6)による乱れ付加あり. 0.0(m²/s²)≦*u*'*u*'≦5.0*10⁻⁵(m²/s²)について描画.

図-8 流下方向乱流強度の等値面 不透過水制,水制近傍点での式(6)による乱れ付加なし. 0.0(m²/s²)≦*u*'*u*'≦0.005(m²/s²)について描画.

ここで、不透過水制においては表面が十分に平坦であ ると仮定し、式(6)による水制近傍での人工的乱れは付加 しておらず、不透過水制下流に現れる乱れは平均流の影 響から出現していると考えられる. 正規乱れの付加に よっても、透過水制の乱れの強度はまったく不透過水制 の乱れの強度に届いていない、対象とした実験の未発表 資料によれば、透過水制の場合も不透過と同オーダーの 乱れが生じていることから、式(6)による単純なモデル化 では、多孔体の形状的特質に由来する透過水制付近の乱 れが計算では十分に全体へと反映されず、現在のモデル では小スケールの乱れから大スケールの乱流への渦の合 成13)についてのモデル化が、十分でないことが原因と考 えられる. 同様の乱れの合成が捨石水制下流でも生じて いると仮定すると、乱れの合成を誘発し得る特定の構造 を持った小さな乱れを捨石水制近傍で与えなければなら ず、式(6)を仮定した際の等方的な乱れという前提が成り 立たない可能性がある.実際に、本計算では流下方向の 格子サイズ(0.05m)と捨石水制の粒子の平均粒径(0.035m) とが、ほぼ同様の大きさであり、本来なら捨石の後背流 の組織的構造が格子スケールで解像されるべきであった.

しかしながら、このような捨石背後の組織的な乱れを 再現する上で、多孔体内において平均流れ特性に基づく モデル化には限界がある.木村ら¹⁴⁾の角柱周辺の流れの モデル化のように、捨石の形状自体を格子によって解像 できることが望ましいが、計算格子の作成や境界条件の 複雑さを考慮すると、3次元的に積み上げられた捨石に 対し同様の手法を適用するのは不可能である.また単純 にLESの計算格子を高精度化したところで、格子サイズ に対する相対的な捨石粒子径の影響はかえって大きくな り、問題の解決にはつながらない.このようなことから、 非ダルシー型抵抗則による多孔体流れと、開水路流の LESを組み合わせた捨石構造物周辺の流れのモデル化に 際しては、乱れや流れの非定常性の再現を目的とする場 合、捨石スケールの組織構造を持つ乱れをLESにどう組 み込むかが、今後の課題である.

7. 結論

本研究では、非ダルシー型抵抗則を用いた多孔体内の 流れのモデルをLESによる開水路流れの計算に結合する ことで、捨石による透過水制周辺と内部の流れの3次元 的な把握を試み、さらにモデルの特性について検討を 行った.本研究で得られた知見を要約する.

1)実験結果との比較により、時間平均および水深平均 された流れに関して、本モデルが妥当な再現性を有して いることを確認した。

2) 透過水制は不透過水制よりも、水制前面でのもぐり

こみによる圧力勾配を緩和し、開水路部における2次流の発生を抑制する. さらに2次流が誘発する水路幅ス ケールの流れの非定常性も抑制する.

3) 本モデルは水制背後からの捨石粒子スケールの乱れ と水制下流での乱れの合成を合理的に記述できない.乱 れの瞬間的構造を再現するために、これらを解決するこ とが今後の課題である.

参考文献

- 1)前野詩朗,道奥康治,大西利典,森永 智:捨石堰の破壊時 の水理特性,応用力学論文集,Vol.5,pp.657-664,2002.
- 前野詩朗,道奥康治,森永 智,菊池慶太:捨石堰周辺の流 況解析,水工学論文集,第48巻,pp.829-834,2004.
- 3) 道奥康治,前野詩朗,羽根田正則,古澤孝明:捨石堰を越流 する流れの構造と流量解析,土木学会論文集,No.740/II-64, pp.131-142,2003.
- 4) 道奥康治,南條雅志,石垣泰輔,前野詩朗:捨石水制が冠水 した開水路流の二次元二層流モデル,土木学会論文集, No.782/II-70, pp.31-50, 2005.
- Akahori, R.: Modeling sediment transport in eddy recirculation zones of the Colorado River in Grand Canyon, PhD dissertation, Arizona State University, 2007.
- 6) 長田信寿,細田 尚,村本嘉雄,中藤達昭:3次元移動座標 系・非平衡流砂モデルによる水制周辺の河床変動解析,土木 学会論文集,No.684/II-56, pp.21-34, 2001.
- Deardorff, J. W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, *Journal of Fluid Mechanics*, 41(2), pp.453-480, 1970.
- 8) 細田 尚,長田信寿,村本嘉雄:移動一般座標系による開水 路非定常流の数値解析,土木学会論文集,No.533/II-34, pp.267-272, 1996.
- Ward, J. C.: Turbulent flows in porous media, *Journal of Hydraulic Engineeering, ASCE*, Vol.90, HY5, pp.1-12, 1964.
- 10) Yabe, T. and Aoki, T.: A universal solver for hyperbolic equations by cubicpolynomial interpolation I. One-dimensional solver, *Comp. Phys. Comm.* 66, pp. 219-232, 1991.
- Jeong, Jinhee., and Hussain, Fazle, On the identification of a vortex. J. Fluid. Mech., 285, pp.69-94, 1995.
- 12) 道奥康治,石垣泰輔,前野詩朗,竹原幸生,江藤剛治,南 條雅志,羽根田正則:捨石で構成された堰・水制の水理機能, 京都大学防災研究所年報,第47号B別冊,2004.
- Uijttewaal, W. S. J. and Jirka, G. H.: Grid turbulence in shallow flows, *J. Fluid Mech.*, Vol.489, pp.325-344, 2003.
- 14) 木村一郎, Uijttewaal, W. S. J., 細田 尚:二次元および三 次元RANSモデルによる浅水格子乱流の数値解析,水工学論 文集,第51巻, pp.799-804, 2007.

(2007.9.30受付)