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This paper proposes a new method for continuous measurement of pollutant load in rivers without 
much cost. The basic idea is making the most of “empirical correlations which exist in the target” in order 
to relate what we can measure to what we want to know. In a field experiment presented here, signals 
from two types of optical sensors were used to estimate the loads of chemical oxygen demand (COD), 
total nitrogen (T-N) and total phosphorus (T-P), and artificial neural network (ANN) models were trained 
to fix “the empirical correlations” among them. The field data were collected in seven rivers located in 
the watershed of Lake Kasumigaura. The experimental results showed that the three items of water 
quality were stably estimated with good accuracy for rather long time without too much training data.  
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1. INTRODUCTION 
 

Reduction and control of pollutant load from 
non-point sources is the key issue to solve the 
eutrophication problem in closed water bodies such 
as lakes, reservoirs, inner bays. In order to take 
effective actions for the purpose, monitoring of 
water quality in inflowing rivers with continuous or 
high frequent measurement is required because the 
pollutant load from non-point sources increases 
sharply during a rain runoff1). 

Recently, immersed-type optical sensors of 
self-recording have been commercialized for 
continuous in situ measurement for some items of 
water quality such as Chl-a, D-COD2). Because 
optical measurement has a strong point of getting 
continuous data, it has a large potential to be used in 
the monitoring of river water. At present, however, 
the measurable items are very limited, and we 
cannot obtain the indices of pollutant load relating 
to eutrophication such as COD, T-P and T-N. 

On the other hand, many in situ measurements 

depend on empirical relations obtained “locally” to 
some extent: Time series of river flow rate (Q) is 
usually obtained from water level (H) being based 
on an empirical correlation between them; Chl-a 
measurement by using a fluorometer needs 
calibration for the conditions of algae in each water 
area3); particulate phosphorus (P-P) estimation by 
using turbidity meter needs an empirical correlation 
obtained in each river4); L-Q method for pollutant 
load (L) depends on an empirical correlation 
between the two factors. However, those techniques 
work well when the empirical correlations are 
formulated properly. 
 Considering the above mentioned conditions, the 
authors proposed a technique of water quality 
measurement in which signals from an optical 
measurement device are converted to time series of 
COD, T-P and T-N being based on empirical 
correlations obtained in each river5). The technique 
was extended by introducing ANN (artificial neural 
network) for modeling the empirical relations6). In 
the previous two papers, due to limit of the range of 



 

Table 1 Land-uses in the watershed of the present study 

Land-use (%) Name of 
river 

Area(km2) 
Paddy Cropland Forest Urban use Other use* 

Measurement period 

Koise 144.6 19.5  18.6  49.4 †  7.0  5.5  

Sonobe 71.6 15.3  41.9  23.8  13.1  5.9  

6/1/2005 - 12/1/2005& 
5/18/2006 - 8/1/2007 

Sakura 333.0 28.1 †  16.9  34.6  11.7  8.7  

Seimei 25.0 14.0 32.8 18.2  21.5 †  13.5 †  

Ono 144.8 20.0  29.1 22.7 18.5  9.7  

Tomoe 113.2 15.9  46.8  21.6  11.0  4.7  

Hokota 39.5 11.3  53.9 †  24.2  7.5  3.1  

9/15/2006 - 8/1/2007 

* Other use includes golf field, wild land and water surface. 
† The largest for each land-use among the seven river basins. 
 

 
Fig. 1 Location of measurement sites 

 
data, so its general practicality was not well defined. 
 In this paper, the following points are discussed 
being based on a plenty of data obtained recently: 
(1) A long term application of an empirical model 
constructed by ANN. (2) Practicality of the ANN 
modeling in river basins with different land uses. (3) 
Comparing an ANN model for estimation of 
pollutant concentration with another ANN model for 
direct estimation of pollutant load. 
 
2. ARTIFICIAL NEURAL NETWORK 

 
Recently, ANN is widely used for empirical 

modeling of hidden dynamics in the environment7-10). 
It is said that ANN belongs to a class of data driven 
approach whereas conventional statistical methods 
are model driven11). In other words, ANN is more 
flexible than conventional statistic methods to catch 
complex relations among environmental data, or, in 

a sense, ANN is able to simplify the procedure of 
statistical analysis of the complex relations12). 

In this study, the software named “Predict” 
supplied by the Neuralware Company was adopted 
to model the correlation of pollutant load L (COD, 
T-P, T-N) with two signals from an optical 
measurement device (Compact-CLW: ALEC 
Electronics) X1, X2 and a time series of river flow 
rate Q. 

L =f (X1, X2, Q)  (1) 

The Predict was designed based on “Cascade- 
Correlation Learning Architecture” which begins 
with a minimal network, then automatically trains 
and adds new hidden units one by one, creating a 
multi-layer structure13). One of the benefits of this 
method is that the network retains the structure even 
if the training set changes, and it requires no 
back-propagation of error signals through the 
connection of the network. In our problems, 
therefore, even if the condition of river basin 
changes gradually in time, the model can be easily 
improved by adding training data obtained from 
recent measurement. 

 
3. FIELD EXPERIMENT 
 

Field experiment was carried out in seven rivers 
flowing into Lake Kasumigaura. Fig. 1 shows the 
river basins and the locations of measurement sites. 
An immersed-type optical measurement device 
(Compact-CLW: ALEC Electronics) was placed in 
the low water channel of each river. Measurement 
interval was 10 minutes. Surface water was sampled 
from a bridge during floods as well as the time of 
normal condition. The items and the methods of 
water analysis were identical with those described in 
previous papers5), 6). Table 1 shows the area and the 
land-uses of the river basins upstream from the 
measurement sites with the period of experiment in
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Fig. 2 Time series of COD, T-P and T-N load of the Koise River from the year 2006 through the year 2007 
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Fig. 3 Enlarged figures of four storm events of pollutant load of the Koise River in the years 2006 and 2007  

(a) 2006.6.9-10; (b) 2006.10.6-7; (c) 2006.11.19-20; (d) 2007.5.25-26 

 
each river. The land-uses of the river basins are very 
different from one to another. 

 
4. RESULTS AND DISCUSSION 
 
(1) Practicality for long term application 

Data of the Koise River, in which the 
experimental period was the longest and the volume 
of data was the largest among the seven rivers, was 
used to discuss the long term application of an 

empirical model constructed by the ANN. The data 
was divided into two parts: the data obtained in the 
year 2005 for training the model and the data in the 
years 2006 and 2007 for evaluating the performance 
of the model. The number of training data is 53 for 
floods and 14 for normal condition, while the 
number of verification data is 54 for floods and 19 
for normal condition. 

Fig. 2 shows the verification results. The blue 
solid lines in the figures show the time series of 
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Fig. 4 Time series of COD load of other rivers from the year 2006 through the year 2007 

(a) the Sakura River; (b) the Hokota River; (c) the Seimei River 
 

 
Fig. 5 Land-uses and enlarged figures of three storm events for each river in the year 2007 

(a) the Sakura River; (b) the Hokota River; (c) the Seimei River 
 
(a) COD, (b) T-P and (c) T-N for the years 2006 and 
2007 produced by the ANN model that was trained 
with the data of the year 2005. Red dots show the 
results of water analysis. The detailed variations of 
the same data during four flood events are shown in 
Figs. 3. Dotted lines in the figures show the river 
flow rate. There are small discrepancies in some 
parts, but the general agreement seems good 
although they were deduced from one model that 
was calibrated in a different year. 

The scales of the hydrograph and pollute-graph 

shown in Figs. 3 vary from one flood to another 
flood. From the Fig. 3(b), the peak discharge of the 
flood is not synchronous with the peak loads of 
COD, T-P and T-N. This kind of phenomena cannot 
be described by the conventional L-Q method. The 
fact shows the possibility that introduction of the 
proposed method will improve the estimation 
accuracy of pollutant load remarkably. 

Needless to say, every field measurement based 
on empirical relations will fail if site condition 
changes. Therefore, the ANN model should be  
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Fig. 6 Comparison of load estimation of the Koise River by different ANN models  

(a) 2006.6.9-10; (b) 2006.10.6-7; (c) 2006.11.19-20; (d) 2007.5.25-26 

trained with new data at some intervals. As Fig. 2 
showed that the training with the data obtained in 
the year 2005 was still effective for the years 2006 
and 2007, very frequent calibration may not be 
necessary. However, the criterion of its frequency is 
a subject to be studied in the future. 
 
(2) Practicality for application to river basins of 

different characteristics 
ANN models were constructed for the seven 

rivers listed in Table 1 in order to discuss the model 
practicality to the river basins of different 
characteristics. Because of the restriction of space, 
the results of the Sakura River, the Hokota River 
and the Seimei River are presented in this paper. 
The land uses of the river basins are very different 
from one to another. 

The field experiment in those rivers was carried 
out from September 15, 2006 to August 1, 2007. 
The data was divided into two parts: the data 
obtained in the year 2006 for training the ANN 
model and the data in the year 2007 for evaluating 
the performance of it. The number of training data 
is 14 for floods and 7 for normal condition, while 
the number of verification data is 15 for floods and 
9 for normal condition on the average. 

Figs. 4 show the results for COD in the same 
way as Figs. 2. Figs. 5 show the detailed variations 
of the same data during three storm events, which 
are different in scale of flood to each other. The 
pentagonal graphs on the left hand side show the 

land use of each river basin. The general 
agreements are worse than the case of the Koise 
River shown in Figs. 2 and Fig. 3. The reasons may 
be: 1) the period of training data was short; 2) the 
season of training data is different from that of 
verification data. In this case, storm events included 
in the training data occurred in autumn (September. 
26 and October 5, 2006), while storm events in the 
verification data occurred from winter to early 
summer. However, in spite of the problems of 
training data, the ANN model estimates COD in 
rivers of different characteristics fairly well. 

 
(3) Comparison of two different methods of load 

estimation 
Because pollutant load is a product of pollutant 

concentration and flow rate, there can be another 
use of ANN based on the following equation: 

L = C(X1, X2)×Q  (2) 

where Q is separated from other variables, and 
ANN is used to estimate C(X1, X2). In this case, the 
number of input variables is reduced from three in 
Eq.(1) to two in Eq.(2), which reduces the freedom 
of the ANN model a little bit: If the dependency of 
C on X1 and X2 is changed by some unknown 
factors and if the factors have some local 
correlation with flow rate, then Eq.(1) will estimate 
L better than Eq.(2). But, if the correlation between 
the variables is absent or small, the scheme of 
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Eq.(1) may mislead the ANN model because of 
much freedom. 

Fig. 6 shows the comparison of the two 
methods for four flood events. The scheme of 
Eq.(2) seems slightly better than that of Eq.(1). 
However, because the difference between them is 
not very clear, we cannot make decision at this 
moment. 

 
5. CONCLUSIONS 
 

The environment is very complex. In order to 
acquire more information from the environment, we 
should make full use of existing knowledge 
including empirical and local ones rather than 
simply pursuing the perfect or universal knowledge 
of science. In the previous study5), the authors 
proposed an idea of utilizing empirical and local 
correlations to estimate time series of pollutant 
loads in rivers. Artificial Neural Network must be a 
power tool to model the correlations because we 
behave successfully in daily life by utilizing the 
empirical and local correlations stored in our human 
neural networks. Major conclusions of this study 
are as follows. 
(1) ANN software “Predict” based on 

Cascade-Correlation Learning Architecture 
which was calibrated with the data of the year 
2005 successfully estimated the time series of 
COD, T-P and T-N load in the Koise River in 
the year 2006 and 2007. 

(2) The results of application to other rivers 
showed that the ANN model is applicable to 
river basins of different characteristics fairly 
well though the estimation accuracy was 
slightly lower than the case of the Koise River 
because of the lack of the data amount. 

(3) An ANN model for estimation of pollutant 
concentration based on Eq.(2) was compared to 
another ANN model for load estimation based 
on Eq.(1). The results from the former seemed 
slightly better than the latter, but the difference 
was so small that the conclusion on this point 
could not be made. 
This fact suggests that introduction of the 

proposed method will improve the estimation 
accuracy of pollutant load remarkably. 
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