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    As a meshfree particle method, the Moving Particle Semi-implicit (MPS) method is ideally suited 
for simulating the complicated behaviour of water surface with fragmentation. In this paper, the original 
formulations of MPS method are revisited from the view point of momentum conservation. Modifications 
and corrections are made to ensure the momentum conservation in a particle-based calculation of viscous 
incompressible free-surface flows. The excellent performance of Corrected MPS (CMPS) method in the 
exact (and nearly exact) conservation of linear (and angular) momentum is shown by a simple numerical 
test. The CMPS method is then applied to the simulation of wave breaking and post-breaking. Refined 
simulation of a solitary plunging breaker and resultant splash-up is demonstrated through comparisons 
with experiment. A tensor-type strain-based viscosity is also proposed for further enhanced CMPS 
reproduction of splash-up. 
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1. INTRODUCTION 
 

Accurate simulation of a free surface flow is a 
challenging hydraulic problem due to the presence 
of an arbitrary moving interface. Numerous 
grid-based interface capturing techniques such as 
the VOF method1) were developed to tackle the 
difficulty in free surface modeling. Nevertheless, the 
VOF-type models suffer from the problem of 
numerical diffusion arising from the grid-based 
discretization of advection terms in the 
Navier-Stokes equation. The numerical diffusion 
becomes more significant when the free surface 
undergoes large deformations accompanied by fluid 
fragmentations (as in the case of a plunging wave 
breaking and resultant splash-up). A few algorithms 
such as the CIP method2) have been proposed to 
attenuate the numerical diffusion; yet, the 
implementation of such sophisticated algorithms 
would further complicate the computational 
procedure for free surface modeling. 

Recently, the meshfree particle methods have 
been applied in many engineering applications 

including the simulation of free-surface flows. 
Thanks to the fully Lagrangian treatment of discrete 
particles, the particle methods can easily handle the 
difficulty in free surface modeling without the 
numerical diffusion. Particle methods can be 
classified into those based on field estimations, as 
the Element Free Galerkin method, or those based 
on kernel approximations, as the Smoothed Particle 
Hydrodynamics (SPH) and the Moving Particle 
Semi-implicit (MPS) methods. 

Originally developed by Koshizuka and Oka3), 
the MPS method has proven useful in a variety of 
problems. The MPS method has been improved and 
extended into Coastal Engineering to study wave 
breaking4) and overtopping5). In spite of being a 
capable method for calculation of hydraulic 
phenomena, the MPS method suffers from some 
inherent difficulties, one of which is the 
non-conservation of momentum. This has been a 
critical theme in the SPH research6). In case of the 
MPS method, however, there have been much less 
studies regarding to the mentioned difficulty. 

This paper is focused on the momentum 



 

conservation properties of the original MPS 
formulations. The aim is to improve the 
performance of the MPS method by modifying and 
correcting the formulations while maintaining their 
robustness and simplicity. The target phenomenon is 
a strong plunging breaker and the resultant 
splash-up. Moreover, as the splash-up is a highly 
deformed flow characterized by anisotropic strain 
rates, it would be preferable to calculate the viscous 
forces by applying a tensor-type strain-based 
viscosity. For this reason, we propose a strain-based 
viscosity when the CMPS method is supposed to 
simulate a highly anisotropically deformed flow as 
the splash-up. 
 
2. MPS METHOD 
 

In this section, the MPS method is briefly 
explained. Detailed description is provided by 
Gotoh et al.5). The fluid is modeled as an assembly 
of interacting particles, the motion of which is 
calculated through the interactions with neighboring 
particles. The governing equation is the 
Navier-Stokes equation: 
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where u = particle velocity; t = time; ρ = fluid 
density; p = particle pressure; g = gravitational 
acceleration and ν  = laminar kinematic viscosity. 
The above equations are discretized by use of 
particle interaction models defined as3): 
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where Ds = number of space dimensions, r = 
coordinate vector of fluid particle, w(r) = the kernel 
function, n0 = the constant particle number density 
and λ is a parameter introduced as follows: 
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Following Koshizuka et al.7), the pressure 

gradient is defined by replacing φi in Eq. 3 by the 
minimum value of φ  among the neighboring 
particles, such as: 
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This replacement improves the stability of the code 
by ensuring the interparticle repulsive force7). 
 
3. MOMENTUM CONSERVATION 

PROPERTIES OF MPS FORMULATIONS 
 
(1) Conservation of linear momentum 
   The total linear momentum of a system of 
particles is given by: 
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where N = total number of fluid particles; mi and ui 
represent the mass and velocity of particle i, 
respectively. The motion of each particle is 
governed by the Newton’s second law: 
 

iiii m aAF =−     (9) 
 
where Fi and Ai denote the external and internal 
forces acting on particle i and ai is the instantaneous 
particle acceleration. In the absence of external 
forces, the rate of change of total linear momentum 
is: 
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Hence, the condition for preservation of linear 
momentum can simply be written as: 
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In Eq. 11, Ni = total number of neighboring particles 
of particle i; Aij = the internal interacting force 
between particle i and its neighboring particle j. It 
can be shown that the linear momentum is exactly 
conserved for the viscous forces as the same 
magnitude of forces act in the opposite direction. 
From Eq. 4, the viscous force on particle i owing to 
j is: 
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which is exactly equal and opposite to the force on 
particle j owing to i. For the pressure interacting 
forces, however, the same is not true. From Eq. 6, 
the force due to pressure on particle i owing to j is: 

 



 

 

jφ

i

iφ 2

))((

ij

ijij

rr

rr

−

−−φφ

jk
er

2/er ijr

( ijij

ij

ijip
ij w

ppm rrrr
rr

A −−
−

−−
=→ )(

ˆ
2ρ

)     (13) 

 
while the pressure force on particle j owing to i 
would be: 
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Therefore, . Consequently, conservation 
of linear momentum is not guaranteed for the 
pressure forces. Even if p

p
ji

p
ij →→ −≠ AA

i had not been replaced 
with the minimum pressure at neighboring particles, 
the pressure interacting forces were equal (if mi=mj) 
in magnitude but not opposite in direction. 
 
(2) Conservation of angular momentum 

The total angular momentum of a system of 
particles with respect to origin is given as: 
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By time differentiating and considering the law of 
motion in the absence of external forces, the rate of 
change of angular momentum of the system is: 
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Thus, conservation of angular momentum will be 
guaranteed if: 
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when Aij = -Aji, the angular moment of the 
interacting forces between particles i and j will be: 
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The above term will vanish whenever the interaction 
force Aij is co-linear with the position vector rij. The 
interacting pressure forces between particles i and j 
are collinear with the vector rij as the pressure term 
(Eq. 6) is a product of a scalar and the vector rij. 
However, since the interacting pressure forces are 
not opposite, similar to the linear momentum, the 
conservation of angular momentum is not ensured. 
In case of the viscous forces, the interactions do not 
necessarily lie on the same line with vector rij; 
hence, conservation of angular momentum is not 
guaranteed either. Briefly speaking, in the MPS 
method, angular momentum is not conserved while 
linear momentum is conserved only in case of 
viscous forces. 

 
Fig. 1 Concept of gradient operator in MPS and CMPS methods 
 
4. DERIVATION OF CMPS 

FORMULATIONS 
 
(1) CMPS: conservation of linear momentum 
   As previously discussed in section 3.1, the 
pressure gradient term in the MPS method does not 
guarantee the conservation of linear momentum. For 
this reason, we propose another formulation for 
pressure gradient term. Eq. 6 is rewritten here, 
splitting the nominator of the fraction containing the 
pressure terms. 
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The concept of the gradient model in the MPS 
method is depicted in Fig. 1. In order to derive the 
new formulation, an imaginary point k is considered 
on the midpoint of the position vector rij. The 
gradient term is now modified considering point k 
and the imaginary position vector rik (= rk - ri). 
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In Eq. 20, n0-ik refers to the particle number density 
in the new imaginary influence circle of particle i 
which contains the neighboring particles k. In the 
MPS method, originally a linear variation of 
pressure is assumed in the short distance between 
particles i and j. Hence, pk can be substituted by 
(pj+pi)/2 while rik is also rij/2. Therefore: 
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On the other hand, it can be shown that the weight 
function applied in the new imaginary influence 
circle is equal to the one in the initial influence 
circle: 
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Thus, the new pressure gradient term is written as: 
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Since the minimum pressure in the influence circle 
of particle i is not necessarily equal to that
influence circle of particle j, Eq. 24 is not 
symmetric. In order to make it a full symmetric 
equation, is replaced by . Hence, the 

w pressure gradient term in the CMPS method is 
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The linear momentum is exactly conserved when 
the above symmetric equation is applied. Since the 
onservation

ne

thod 
c  of linear momentum is also guaranteed 
for the viscous forces (Eq. 12), in the CMPS me
the total linear momentum of the system would be 
xactly conserved. To avoid the overestimation of 

In the CMPS method the 
n 

e
pressure gradient calculated by Eq. 25, especially 
close to the free-surface, some modification is made 
in the averaging process. 
 
(2) CMPS: conservation of angular momentum 

The exact conservation of angular momentum is 
not ensured in the MPS method as viscous forces 
are not co-linear with the position vector of two 
neighboring particles and the pressure interacting 
orces are not opposite. f

new pressure gradient term is symmetric in additio
to being radial (co-linear with the position vector 
rij); thus, angular momentum is exactly conserved in 
case of the pressure interacting forces. For the 
viscous interacting forces, however, conservation of 
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Fig. 2 Variation of total x-direction linear (a) and angular (b) 
momentum during the evolution of an elliptica  

 
angular momentum is not strictly ensured. 
Nevertheless, in next chapter, we will show the 
significantly improved preservation of total
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In this section, a simple test is carried out to 
show the enhanced performance of CMPS in 
momentum conservation. The test
of an elliptical water drop . The initial fluid
configuration is a circle of radius 1 m subject
n

00x, 100y) m/s. During the calculation due to the 
absence of external forces total linear and angular 
momentum should be preserved. Fig. 2(a-b) shows 
the time variation of total linear momentum in x 
direction and total angular momentum for both MPS 
and CMPS methods. The figure confirms that the 
conservation of linear and angular momentum is not 
guaranteed in the MPS method. In contrast, total 
linear momentum is exactly conserved in the CMPS 
method. Moreover, the new formulation of pressure 
in CMPS method has significantly improved the 
conservation of angular momentum. In the CMPS 
calculation performed here, the amplitude of 
fluctuations in total linear and angular momentum 
do not exceed 1O-12 and 1O-03, respectively. 
 
6. SIMULATION OF A PLUNGING 

BREAKER AND RESULTANT 
SPLASH-UP 

 
(1) Qualitative comparison
   Breaking and post-breaking of a solitary
with the incident relative wave height or the
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Fig. 3 A plunging breaker and resultant splash-up - qualitative 
comparison of CMPS and MPS snapshots with laborator
photographs9) 

 
offshore wave height (=H0) to offshore water depth 
(=h0) of H0/h0=0.40 is simulated over a slope (=s) o

hits r ahead of the wave, accordingly a 
condary shoreward directed jet is generated from 

t 
(Fi

1:15. The prescribed conditions would lead to a 
strong plunging breaking in which the plunging jet 

the still wate
se
the impact point. The splash of water in form of a 
secondary jet, often known as splash-up, is a 
complex yet important process as it plays an 
essential role in the dissipation of wave energy and 
momentum transfer. The applicability of the MPS 
method in the simulation of splash-up is already 
shown by Khayyer and Gotoh8). Here we show the 
refined simulation of splash-up by CMPS method. 

Fig. 3 illustrates the CMPS and MPS snapshots 
together with the laboratory photographs9). From the 
figure, it is evident that the simulation-experiment 
qualitative agreement is better in case of CMPS 
method. The CMPS results portray a clearer image 
of the plunging jet (Fig. 3(a)) and its impingemen

g. 3(c)) with less particle scattering as seen in 
MPS snapshots. In addition, from Fig. 3(e-g), the 
splash-up is more precisely simulated by the CMPS 
method as the reflected jet angel and the air 
chamber beneath the plunging jet are in better 
agreement with the experiment. Yet, the entire curl 
of the splash-up has not been well reproduced. One 
of the main reasons behind this disagreement is 

expected to be the employment of a simplified 
Laplacian model (Eq. 4) which treats the viscosity 
as a scalar quantity. Here, we propose a tensor-type 
strain-based viscosity which helps the viscous 
accelerations to be calculated from a strain rate 
tensor. 

In a kernel-based particle method such as the 
MPS method, the divergence of a function f(x) can 
be calculated from the following equation: 
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In Eq. 27, T = the viscous stress tensor which can be 
related to the strain rate of flow by the following 
equation: 
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where, µ = dynamic viscosity ; u and v 
components of the particle velocity in x 
directions, respectively. The velocity and kernel 
gradients are introduced for each particle as: 
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The strain-based viscosity introduced abo
27) exactly preserves linear momentum; yet
to the original MPS formulation of viscosity (Eq. 4) 
it does not exactly conserve angular momentu

Fig. 4 shows the snapshots of standard MPS, 
MPS, and CMPS with Strain-Based Viscosity 

ig. 
4(g

MPS (c)

CMPS (g) 

MPS (g) MPS (e) 

MPS (a) 

CMPS (e) 

C
(CMPS-SBV) and the laboratory photographs9). The 
employment of a strain-based viscosity has resulted 
in a further enhanced reproduction of the splash-up 
development (Fig. 4(f)) and its curling back (F

)) by the CMPS-SBV method. 
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Fig. 4 Enhanced reproduction of splash-up - qualitativ
between l  photographs9) and 

SBV, CMPS and MPS snapshots 
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aboratory

 
Fig. 5 CMPS and MPS predictions of the trajectory of the 

plunging jet tip 
 
(2) Quantitative comparison 

In order to further evaluate the accuracy of 

breake  ; s = 1:15) is simulated and the 
sults are quantitatively compared to the 

parisons are made in 
term

ased 
alculation of free-surface flows. Refined 

r and resultant 
plash-up are presented through the application of 

CMPS method, another case of solitary plunging 
r (H0/h0 = 0.30

re
experimental data by Li10). Com

s of the trajectory of the plunging jet tip and 
plunging jet length (= the horizontal distance from 
the tip of the jet to the nearest location of the wave 
surface which is vertical). From Fig. 5, the CMPS 
method has given a more accurate prediction of the 
motion and location of the plunging jet tip. In this 
figure, xt and xb indicate the x-coordinate of 
plunging jet tip and the breaking point, respectively. 
The variation of the plunging jet length L1 is also 
better predicted by the CMPS method (Fig. 6). 
 
7. CONCLUSIVE REMARKS 
 

The paper highlights the importance of 
momentum conservation in a particle-b
c
simulations of a plunging breake
s

 
Fig. 6 CMPS and MPS predictions of the plunging jet length 

 
two corrected versions of the MPS method, namely, 
the Corrected MPS (CMPS) and the Corrected MPS 
with Strain-Based Viscosity (CMPS-SBV). The 
s  

ulti-phase code with the SPS (Sub-Particle-Scale) 

) Yabe, T., Xiao, F., Utsumi, T.: The constrained 
profile method for multiphase analysis, 

3) 
on of incompressible fluid, 

4) 
., 

5) 
 a 

6) 
ooth particle hydrodynamic 

7) is 

8) 
d post-breaking of solitary waves, Annual 

9) 
rt, 

10) 
y of 

11) ale 

 

CMPS (f) CMPS (g) 

MPS (f) MPS (g) 

V (g) 

tep-by-step extension of CMPS method to a 3D
m
turbulence modeling11) is among the future works. 
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